7/10/2012

CS61A Lecture 9
Immutable Data Structures

Jom Magrotker
UC Berkeley EECS

July 2, 2012

-) - - - [¢#74

COMPUTER SCIENCE IN THE NEWS

Google unveils Glass at Google 1/0, June 27

* Prototypes available to developers at the
beginning of next year for around $1500
and to general public in 2014.

* Skydivers wore Glasses and jumped off a
plane: their views were transmitted live
to an audience at the Moscone Center.
(Video:
http://www.youtube.com/watch?v=D7TB
8b2t3QE)

¢ Glasses are meant to interact with
people’s senses, without blocking them.

* Display on the Glasses’ computer appears
as a small rectangle on a rim above the
right eye.

-) - - . @

TODAY

* Review: Tuples.
¢ Review: Data abstraction.

* New sequences and data structures:
Ranges, Pairs, Immutable recursive lists.

-) - - - ; @

SEQUENCES

A sequence is an ordered collection of data values.

There are many kinds of sequences, and all share
certain properties.

Length: A sequence has a finite length.

Element selection: A sequence has an element for
any non-negative integer less than its length.

-) - - -] ﬂ

REVIEW: TUPLES

A tuple is a built-in type that represents a sequence.

>>> triplet = (1, 2, 3)
>>> len(triplet)

3 Tuples have length.
>>> triplet[0]

>>> from operator import getitem
>>> getitem(triplet, 0)
1

() - - ; @

REVIEW: TUPLES

A tuple is an example of a data structure.

A data structure is a type of data that exists
primarily to hold other pieces of data in a
specific way.

() - - ; @

REVIEW: WORKING WITH TUPLES

Write the higher order function map, which takes a
function £n and a tuple of values vals, and returns a
tuple of results of applying £n to each value in vals.

>>> map(square, (1, 2, 3, 4, 5))

(1, 4, 9, 16, 25)

>>> map(lambda x: x+1, (1, 2, 3, 4, 5))
(2, 3, 4, 5, 6)

-) - - - , Q{

7/10/2012

REVIEW: WORKING WITH TUPLES

Write the higher order function map, which takes a
function ¥n and a tuple of values vals, and returns a
tuple of results of applying £n to each value in vals.

def nap(fn, vals): pmpm

results = (

for val in vals:
results = results + (fn(val),)

return results

Add the new element to the growing tuple.

) - - - . ,@f

REVIEW: WORKING WITH TUPLES

Write the higher order function filter, which takes a
predicate function pred and a tuple of values vals,
and returns a tuple of values that satisfy the predicate.

>>> filter(lambda x: x%2==0, (1, 2, 3, 4, 5))
(2, 4)

>>> filter(isprime,| (2, 3, 4, 5, 6))

(3, 5)

return True or False.
-@----- . @

RANGES

A range is another built-in type that represents a sequence.
It represents a range of integers.

>>> range(@, 10) >>> sum = @

range(0, 10) >>> for val in range(5):
>>> tuple(range(0, 10)) . sum += val

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) >> sum

>>> tuple(range(4)) 10

(6, 1, 2, 3) >>> for _ in range(3):
>>> tuple(range(0, 4, 2)) . print(“Go Bears!”)
(e, 2) Go Bears!

>>> len(range(@, 10)) Go Bears!

10 Go Bears!

>>

v

range(1, 10)[3]

4-[E]----- " @

ANNOUNCEMENTS

¢ Homework 4 is due July 3.

* Homework 5 is released, due July 6.
* Project 2 is released, due July 13.

* No class on Wednesday, July 4.

* Project 1 contest is on!

— How to submit: Submit a file with your final_strategy
to projl-contest.

— Deadline: Friday, July 6 at 11:59pm.
— Prize: One of 3 copies of Feynman and 1 extra credit point.

— Metric: We will simulate your strategy against everyone
else’s, and tally your win rate. Draws count as losses.

() - - u @

ANNOUNCEMENTS: MIDTERM 1

e Midterm 1is on July 9.
— Where? 2050 VLSB.
— When? 7PM to 9PM.
— How much? Material covered until July 4.

* Closed book and closed electronic devices.

* One 8.5” x 11” ‘cheat sheet’ allowed.

e Group portion is 15 minutes long.

* Post-midterm potluck on Wednesday, July 11.

() - - - @

7/10/2012

REVIEW: DATA ABSTRACTION

We want to think about data in terms of its
meaning, not its representation.

Programs should operate on abstract data.

We use functions to create a division between
manipulation and representation.

Functions can be constructors or selectors.

-) - - - " Q{

EXAMPLE: STUDENT RECORDS

We would like to work with student records.
make_student(name, id, grades) createsa new record.
name (student)«eturns the name of student
calid(student) |returns the ID of student.

EXAMPLE: STUDENT RECORDS

Write a function names_start_with that
takes in a tuple of student records, records,
and a letter, and returns a tuple of the IDs of
the students whose name starts with letter.

-) - - - " @

EXAMPLE: STUDENT RECORDS

Write a function names_start_with that takesin a
tuple of student records, records, and a letter, and
returns a tuple of the IDs of the students whose name
starts with letter.

def names_start_with(records, letter):
results = ()
for record in records:
if name(record).startswith(letter):
results = results + (calid(record),)

return results ent the

Did not even have to implem

functions for the student record .
-®- - . abstract data type (ADT). " ‘c-; g

EXAMPLE: STUDENT RECORDS

Can use anything to construct the student record, as long
as the selectors are consistent.

def make_student(name, id, grades):
return (name, id, grades)
def name(student):
return student[0]
def calid(student):
return student[1]
def grades(student):
return student[2]

() - - . @

RESPECT THE DATA ABSTRACTION!

Louis Reasoner wrote the following code to count the number
of As for a given student. However, he has a data abstraction
violation. Correct his code so that it respects the data
abstraction.

def count_as(student):
number_of_as = 0@
for grade in student[2]:
if grade == “A”:
number_of_as = number_of_as + 1
return number_of_as

() - - " @

RESPECT THE DATA ABSTRACTION!

Louis Reasoner wrote the following code to count the number
of As for a given student. However, he has a data abstraction
violation. Correct his code so that it respects the data
abstraction.

def count_as(student):
number_of_as = 0@
for grade in grades(student):
if grade == “A”:
number_of_as = number_of_as + 1
return number_of_as

-) - - - " Q{

7/10/2012

BREAK

Joi.)| THS PIECE 1S ABOUT | BY ABANDONING REFRESEN- | 1 NOTICE YOUR
THE IRADEGUACY OF | TATIONALISM, IM FREE TO | OEUNRE 1S | WELL C'Mew,
4 mmnmw. w&m BIPRESS MISELF WITK PURE. m e ru .NSY
FORM. SPECIFIC. INTERPRE -
t.mm mme THNON GIVES WA TO A
H TN TOOAYS WORLD, | MORE VISCERAL RESRONSE
_,__/

£

g sonation comfimparted_asets/025878/bi7

IMMUTABILITY

Numbers, Booleans, strings, tuples, and ranges
are examples of immutable data structures.

Values do not change over time.

IMMUTABILITY

To “modify” an immutable data structure, we
would need to make a brand new object with
the new values.

def map(fn, vals):
results = ()
for val in vals:
results = results + (fn(val),)
return results

-) - - - » ﬂ

Makes a new tuple!

DATA STRUCTURE: PAIRS

A pair is an ADT that can hold two elements.

It can be implemented using tuples.
(But it can be implemented in other ways, including using functions.)
make_pair(x, y) createsa new pair.
first(x) returns the first element of the pair.

second (x)|returns the second element of the pair.

- () - - - @

NESTED PAIRS

For simplicity, we will represent pairs as two-
element tuples.

Pairs can contain other pairs as elements.

(1, 2)
((1, 2), 3)
((1, 2), (3, 4))
((1, (2, 3)), 4)

() - - “ @

7/10/2012

NESTED PAIRS: BOX-AND-POINTER DIAGRAM

(1, 2)

The box represents
the pair.

—>

This arrow shows the
start of the pair,
First element [Second element

-) - - - = Q{

- <——e
I/N <o

NESTED PAIRS: BOX-AND-POINTER DIAGRAM

((1, 2), 3)

—————

|
|
i
i First element of the outer pair
() - - = (ol

NESTED PAIRS: BOX-AND-POINTER DIAGRAM

((1, 2), (3, 4))
BV EhN

w €<—Fe k/

R e
N «——e
» «——o

-@----I- | » @

NESTED PAIRS: BOX-AND-POINTER DIAGRAM

Draw the box-and-pointer diagrams for the
following pairs:

(1, (2, 3))
((1, (2, 3)), 4)
(1, (2, (3, 4)))

-) - - - » ﬂ

NESTED PAIRS: BOX-AND-POINTER DIAGRAM

Nested pair (1, (2, (3, ()))))

e

<o
<« e
w <o

() - - » @

NEW DATA STRUCTURE

Immutable Recursive List <1, 2, 3>

One possible (and useful) representation of a list with
elements 1, 2 and 3

—> T T . T .
)))
1 2 3

() - - » @

7/10/2012

IMMUTABLE RECURSIVE LISTS IMMUTABLE RECURSIVE LISTS
An immutable recursive list (or an IRList) is a <1, 2, 3>
pair such that:
¢ The first element of the pair is the first
element of the list. —] T . T . T .
* The second eleme.nt of the pair is the re.st of l 1' l'
the list — another immutable recursive list. The
rest of the list could be empty. 1 2 3
The first element of the pair is cond 0
Definition is recursive! the first element of the list. pair is the rest of the list. RSt
-) - - - a @ .
IMMUTABLE RECURSIVE LISTS IMMUTABLE RECURSIVE LISTS
empty_irlist = () <1, 2, 3>
def make_irlist(first, rest=empty_irlist): —> L . L

return (first, rest)

<o
<o
<o

def irlist_first(irlist):
return irlist[0]

def irlist_rest(irlist):
return irlist[1]

make_irlist(1,
make_irlist(2,
make_irlist(3, empty_irlist)))

-) - - - » @ -) - - - w ﬂ

IMMUTABLE RECURSIVE LISTS IMMUTABLE RECURSIVE LISTS
Why are they useful? Write the function irlist_len that takes an
* They are defined recursively. Functions that IRList irlist and returns its length.

operate on IRLists are usually best and easily

defined recursively. def irlist_len(irlist):

¢ They are the basis for linked lists, a versatile data if irlist == empty_irlist:
structure in computer science. return @
return 1 + irlist_len(irlist_rest(irlist))

Add 1 to the result ofcalling irlist_len recursively on the rest of

the IRList, which is also an IRList.

» @ () - - * @

IMMUTABLE RECURSIVE LISTS

irlist_len [*@'3*@'}@'}@
=1 + irlist_len [W
1+ 1+ irlist_len [M

1+1+ 1+ irlist_len [')IZ’

-) - - - . Q{

7/10/2012

IMMUTABLE RECURSIVE LISTS

irlist_len [W
=1 + irlist_len [@E-)M
1+ 1+ irlist_len [M

]
=
+
=
+
=
+

IMMUTABLE RECURSIVE LISTS

Write the function irlist_select that returns
the element at position index of the irlist.

(Assume the inputs are valid.)

def irlist_select(irlist, index):
if index ==
return
return irlist_select()

-) - - - » @

IMMUTABLE RECURSIVE LISTS

Write the function irlist_select that returns
the element at position index of the irlist.

(Assume the inputs are valid.)

def irlist_select(irlist, index):
if index ==
return irlist_first(irlist)
return irlist_select(irlist_rest(irlist),
index - 1)

-) - - - o @

IMMUTABLE RECURSIVE LISTS

Write the function irlist_map that takes a
function fnand an irlist, and returns an
IRList of the results of applying fn to the
elements of irlist.

def irlist_map(fn, irlist):
if irlist == empty_irlist:

return
return make_irlist(B
IRLists are immutable!)

() - - . @

IMMUTABLE RECURSIVE LISTS

Write the function irlist_map that takes a function
fn and an irlist, and returns an IRList of the
results of applying £n to the elements of irlist.

def irlist_map(fn, irlist):
if irlist == empty_irlist:
return empty_irlist
return make_irlist(fn(irlist_first(irlist)),

[v WY

IRLists are immutable!
irlist_rest(irlist))

() - - o @

7/10/2012

CONCLUSION

* Data abstraction allows us to separate the
meaning of abstract data from its
implementation.

* Asequence is an ordered collection of data with
certain properties.

* There are many useful ADTs in computer science,
some of which are immutable.

¢ One example of a useful ADT is the immutable
recursive list, built from pairs.

¢ Preview: Immutable dictionaries.

-) - - - - @

