CS61A Lecture 28
Distributed Computing

Jom Magrotker
UC Berkeley EECS

August 6, 2012

() @

8/7/2012

COMPUTER SCIENCE IN THE NEWS

Al predicts when you're about to get sick

[compuing J rutie J

Atenaes ey senor ecmbgy e

TODAY

¢ Distributed Computing
— Network Architecture
— Protocol
— Design Ideas

¢ A Chat Program (with a demo, fingers crossed)

() ; @

REVIEW: LOGIC PROGRAMMING

Write the rule rotate_left, which checks that
the second input list is the result of taking the first
list and shifting the first item to the back of the list.

P?> rotate_left(<a, b, c>, <b, c, a>)
Yes.

P?> rotate_left(<3, 2, 1>, ?wat)
Yes.

swat = <2, 1, 3>

C N NN)] @

REVIEW: LOGIC PROGRAMMING

Write the rule rotate_left, which checks that the second
input list is the result of taking the first list and shifting the
first item to the back of the list.

rule append(<?f | ?r>, ?s, <?f | ?a>):
append(?r, ?s, ?a)
fact append(<>, ?z, ?z)

fact rotate_left(<>, <>)
rule rotate_left(<?>first | ?rest>, ?rotated):
append(?rest, <?first>, ?rotated)

- .- - s @

REVIEW: LOGIC PROGRAMMING

Write the rule rotate_right, which checks that
the second input list is the result of taking the first
list and shifting the last item to the front of the list.

P?> rotate_right(<a, b, c>, <c, a, b>)
Yes.

P?> rotate_right(<3, 2, 1>, ?wat)
Yes.

swat = <1, 3, 2>

----@ ; @

8/7/2012

REVIEW: LOGIC PROGRAMMING

Write the rule rotate_right, which checks
that the second input list is the result of taking
the first list and shifting the last item to the
front of the list.

rule rotate_right(?first, ?second):
rotate_left(?second, ?first)

() , Q{

So FAR

* functions

* data structures
* objects One Program
e abstraction One Computer

* interpretation

¢ evaluation

C N NN . @

TobpAY & TOMORROW

* Multiple Programs!
— On Multiple Computers
(Networked and Distributed Computing)

=

() 5 @

— On One Computer
(Concurrency and Parallelism)

DISTRIBUTED COMPUTING

Independent Computers

(Often) In Different Locations
Connected by a Network
Communicating by Passing Messages

vk wnN e

Shared Computational Goal

- .- - u @

TODAY: DISTRIBUTED COMPUTING

* Programs on different computers working
together towards a goal.
— Information Sharing & Communication
Ex. Skype, The World Wide Web, Cell Networks

— Large Scale Computing
Ex. “Cloud Computing” and Map-Reduce

C N NN) " ﬂ

Torics IN DISTRIBUTED COMPUTING

* Architecture | s »
— Client-Server % s 2
— Peer-to-Peer L . @
» Message Passing \ 4
* Design Principles 2
— Modularity Ao N
— Interfaces %@%
24

C R RN 12@

CLIENT-SERVER ARCHITECTURE

Great for dispensing a i

service.
2 Roles:
¢ Clients: make

I Response
requests to the ™) Response
server. ‘ Request
* Server: listens for \ im Q
_5«{“‘

requests and =
responds to them. CLIENT

Request l
i

CLIENT

() @

8/7/2012

CLIENT-SERVER ARCHITECTURE

SERVER

The Trick:

|24 Response
Where to put different Request/ |
features?
D Response
‘ /Request
Example: “Should | \ |m {,

store X data with the 5=
client or the server?” CLIENT L %i ,
CLIENT

C N NN @

Example: The World Wide Web

Server: Client:

* Holds content. * Requests content.

¢ (Constantly) listens for ¢ Makes (correctly formatted)
clients to request content. requests to the server for

* Sometimes performs content.
computation before ¢ Responsible for making
responding. sense of the response.

Make a request. .

. Figures out
Figures out how to
;rllebpropert _— f’ display the

»e Eag: ° Get a response. web page
give back. that it got.

----I---@ @

DIVISION OF LABOR

Many The Client
Consumers

Make responses
useful for the
user.

Single source

Make requests
on behalf of
the user.

\

Be ready to handle
incoming requests.

Perform necessary
computation to
M produce aresponse.
C R B)

SINGLE POINT OF FAILURE

What happens if the server goes down?
¢ Everything stops working for everyone!

What if the client goes down?

¢ Only that client stops working, everyone else
continues as needed.

- .- - . @

PEER TO PEER ARCHITECTURE

Great for distributing load among a
large pool of computers.

All computers:
¢ Send and receive data.
¢ Contribute resources. []-

Useful for:

* Data Storage
¢ Large-scale Computation
¢ Communication

----@ " @

PEER TO PEER ARCHITECTURE

Advantages:
¢ No single point of failure.
* Can scale with demand.ﬁm

Disadvantages:
¢ Gets pretty complex.

¢ Inefficient
communication.

() " @

8/7/2012

ANNOUNCEMENTS

* Project 4 due Tuesday, August 7.
— Partnered project, in two parts.
— Twelve questions, so please start early!
— Two extra credit questions.

e Homework 14 due Tuesday, August 7.
— Will include contest voting later today.
— Assignment is short.

C N NN " @

ANNOUNCEMENTS: FINAL

* Final is Thursday, August 9.
— Where? 1 Pimentel.
— When? 6PM to 9PM.

— How much? All of the material in the course, from June 18 to
August 8, will be tested.

Closed book and closed electronic devices.

One 8.5” x 11” ‘cheat sheet’ allowed.

No group portion.

We have emailed you if you have conflicts and have told us.
If you haven’t told us yet, please let us know by yesterday.

¢ Final review sessions on Tonight, August 6 and Tomorrow,
August 7, from 8pm to 9:30pm in the HP Auditorium (306
Soda).

() " @

COMMUNICATING

Computers need to be able to send messages
back and forth to...

— Coordinate behavior.

— Transfer data.

— Make requests.

— Indicate status of a request.

3 0110111000100...

»
2 Caf

C R B)

MESSAGE STRUCTURE

There has to be a predefined message structure
if computers are to understand one another.

£

Similar to how people need to agree on a
language if they are to communicate effectively.

- .- - - @

MESSAGE STRUCTURE

Typically a message

includes something To: Alice
like:
— Sender From: Bob
— Receiver

— Action or Response Please tell me the

However, message
format can vary a lot
with the application.

C R RN

daily special.

8/7/2012

ProOTOCOL

¢ For a distributed system to work, we need to
have standardized methods for talking to each
other.

¢ A protocol is the formalisms expected when
programs talk to one another.

* One example is the message format.

¢ Another example: What’s the convention used
for two computers starting up a conversation
with one another?

() = @

THE THREE WAY HANDSHAKE

Extremely common protocol for establishing
two-way communication.

“Hello, can you hear me?”

®: .

““Yes, | can hear you!
Can you hear me?

“) "
Yep, | hear you. Let’s talk!

C N NN " @

THE THREE WAY HANDSHAKE

Why 3 ways?

Need to make sure both sides are hearing each

other!

1. First message is to try to see if the first
computer can be heard.

2. Second message confirms that the first
computer can be heard and acts as a test to
make sure the second computer can also be
heard.

3. Third message confirms the second computer
can be heard.

() » @

BREAK

YOUR EXCUSE FOR
ANYTHING TODAY:

"SORRY~
L WAS UP PLL NIGHT |
TRING

hitp://xked.com/1091/

C N NN) » ﬂ

DeEmMo: CHAT PROGRAM

At this point we’re going to attempt demo-ing
the chat program you’ll be working with in lab
today.

It’s not exactly the most robust chat server, so
we’ll see how it goes.

- .- - » @

DESIGN PRINCIPLES IN DISTRIBUTED SYSTEMS

The idea of abstraction is still important for this
style of programming!

The goal is to make each part of the distributed
system as modular as possible. Should be able
to switch out any component with something
that behaves the same way without any
noticeable changes.

----@ » @

8/7/2012

MODULARITY CONCLUSION
Modularity is achieved by defining and adhering * Distributed systems exist in a variety of flavors, we talked
to int that th be treated about a few major categories.
o interfaces, so tha €y may be treated as ¢ Indistributed systems, the formatting of messages and the
black boxes by other components. protocols for communication determine the ways in which

different parts of the system interact.
* An extremely common protocol is the 3 way handshake for

Advantages: establishing connections.
- C t better impl tati lat * Animportant design principle in distributed systems is
E,m swap ou e. erimp gmen ations later on modularity, each part should follow an interface so that it is
without everything breaking. easy to swap out if necessary.
— You can test different parts by “mocking-up” the * Preview: Multiple programs running at the same time on

the computer. Using distributed computing to handle
enormous tasks.

() 2 @ C N NN . @

interfaces for other components.

