CS 61A Structure and Interpretation of Computer Programs
Summer 2016 Quiz 3

|
INSTRUCTIONS
e You have 25 minutes to complete this quiz.

e The exam is closed book, closed notes, closed computer, closed calculator.

e Mark your answers on the quiz itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

Instructional account (cs6la-_)

BearFacts email (_@berkeley.edu))

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)



http://berkeley.edu

1.

(a)

(5 points) The Evil Empire

Let’s implement a data abstraction for basketball players. Our constructor takes in a name, a position (1, 2,
3, 4, or 5), and, optionally, a backup position. Our selectors retrieve information about a player.

def player(name, position, backup=None) :
if backup:
return {‘name’: name, ‘position’: position, ‘backup’: backup}
return {‘name’: name, ‘position’: position}

def name(player): def position(player):
return player[‘name’] return player[‘position’]

def backup(player):
return player[‘backup’] if ‘backup’ in player else None

When we make a basketball team, we want to make sure that there is at least one player for each position. So
we define a function check_team that takes in a non-empty list of players. check_team returns True if there is
at least one player per position, and False otherwise.

(3 pt) The following implementation works, but it breaks abstraction barriers! Cross out each violation and,
above the original line, write some replacement code that has no violations and maintains correctness.

def check_team(players):
"""Make sure there is at least one player per position.
Look on the next page for the players used in these doctests,
and the implementation of the insert helper function.
>>> check_team([steph, kd, klay, iggy, money])
True

>>> check_team([lebron, wade, kyrie])
False

def checker(players, covered):
if len(covered) == b:
return True
elif len(players) == 0:
return False
p = players[0]

in_main_role = checker(players[1:], insert(covered, pl[‘position’]))

if ‘backup’ in p:

in_backup_role = checker(players[1:], insert(covered, pl[‘backup’]))

return in_main_role or in_backup_role
return in_main_role

return checker (players, [])



Name: 3

The doctest references these players, constructed for testing purposes:

>>> steph = player(‘Steph Curry’, 1)
>>> lebron = player(‘LeBron James’, 3, 4)
>>> kd = player(‘Kevin Durant’, 3, 4)
>>> klay = player(‘Klay Thompson’, 2)
>>> iggy = player(‘Andre Iguodala’, 4, 3)
>>> money = player(‘Draymond Green’, 4, 5)
>>> wade = player(‘Dwyane Wade’, 1)
>>> kyrie = player(‘Kyrie Irving’, 1)

The insert helper function is also used in check_team:

def insert(lst, elem):
"""Add elem to 1lst if elem is not already contained in 1lst.

>>> insert([1, 2, 3], 5)

(1, 2, 3, 5]
>>> insert([1, 2, 3], 2)
[1, 2, 3]

return lst if elem in lst else lst + [elem]
(b) (1 pt) Write a constructor and selectors that correctly implement the player abstraction, but would cause the

original abstraction-violating code of check_team to error or have incorrect behavior.

def player (name, position, backup=None):

def name(player):

def position(player):

def backup(player):

(c) (1 pt) If we call check_team with a list of n players, and every player in the list has a backup position, what
is the order of growth on the runtime of check_team as a function of n? Assume that all built-in functions and
operations run in constant time.

o(1) O(logn) O(n) O(n?) o(2")



