
Brian Hou
June 21, 2016

Lecture 2: Functions

Announcements

• Set up your computer and all accounts (Lab 0) by today

• Piazza, Instructional (cs61a-??), OK

• Discussion sections begin today!

• Office hours begin today!
• Homework 0 is due tomorrow (Wednesday) at 11:59pm
• Quiz 1 will be on Thursday at the beginning of lecture

Expressions

Primitive expressions, names, and environments

Primitive expressions

• Expressions in programs evaluate to values
• Primitive expressions evaluate directly to values with

minimal work needed
• Numbers (e.g. 42, 3.14, 0)
• Names (e.g. pi, add)
• Functions (later today!)

• Some non-primitive expressions: 1 * 2, add(3, 4)

Names

• Giving names to values makes programming easier!
• An assignment statement is one way to bind a name to a

value (e.g. x = 1)

• Each name can only be bound to one value
• Environments keep track of names and their values

(demo)

Execution Rule for Assignment Statements:

1. Evaluate all expressions to the right of = from left to right.

2. Bind all names to the left of = to those resulting values in the
current environment frame.

• Environment diagrams visualize the interpreter's progress

Environment diagrams

Frames (right)

Each name is bound to a value

A name cannot be repeated in a frame

Code (left)

Statements and expressions

Just executed

Next to execute Assignment statement

Name Value

(demo)

Functions

Call expressions, functions, and def statements

Call expressions

• Call expressions use functions to compute a value
• The operator and operands themselves are expressions

• To evaluate this call expression:

1. Evaluate the operator to get a function value

2. Evaluate the operands to get its values
3. Apply the function to the values of the operands to

get the final value

add (2 , 3)
operator operands

Defining functions

• Functions have inputs and outputs

Execution Rule for def Statements:

1. Create a function with signature <name>(<parameters>)

2. Set the body of that function to be everything indented after
the first line

3. Bind <name> to that function in the current frame

def <name>(<parameters>):
 return <return expression>

def square(x):
 return x * x
y = square(-2)

Function body defines computation
performed when function is applied

Function signature indicates name and number of arguments

Calling user-defined functions

Rules for calling user-defined functions (version 1):

1. Create a new environment frame

2. Bind the function's parameters to its arguments in that frame

3. Execute the body of the function in the new environment

User-defined
function

Intrinsic name of
function called Environment

frame

Calling user-defined functions

Rules for calling user-defined functions (version 1):

1. Create a new environment frame

2. Bind the function's parameters to its arguments in that frame

3. Execute the body of the function in the new environment

Parameter bound
to argument

Calling user-defined functions

Rules for calling user-defined functions (version 1):

1. Create a new environment frame

2. Bind the function's parameters to its arguments in that frame

3. Execute the body of the function in the new environment

Return value
(not a binding!)

Break! Environments

Looking up names in environments

• Every expression is evaluated in the context of an
environment

• An environment is a sequence of frames
• So far, there have been two possible environments:

• The global frame
• A function's local frame, then the global frame

Rules for looking up names in user-defined functions (version 1):

1. Look it up in the local frame

2. If name isn't in local frame, look it up in the global frame

3. If name isn't in either frame, NameError

Looking up names in environments

Rules for looking up names in user-defined functions (version 1):

1. Look it up in the local frame

2. If name isn't in local frame, look it up in the global frame

3. If name isn't in either frame, NameError

Multiple environments

>>> def square(x):

... return x * x

>>> y = square(square(-2)) 1

1

2

1

2

(demo)

None and Print

>>> def does_not_square(x):

... x * x

>>> does_not_square(-2)

>>> not_four = does_not_square(-2)

>>> not_four + 4

TypeError: unsupported operand type(s) for +:

 'NoneType' and 'int'

No return

None means that nothing is returned

• The special value None represents nothing in Python

• A function that does not explicitly return a value will
return None

• Note: None is not displayed by the interpreter as the
value of an expression

None value is
not displayedThe name

not_four is
now bound to
the value

None

Pure and non-pure functions

-2 print

Returns None!

None

Python displays the output “-2”

2, 3

3
max

Pure functions
just return values

Non-Pure functions
have side effects

A side effect isn't a
value; it's anything
that happens as a
consequence of

calling a function

2 Arguments

Return value

Nested expressions with print

1
None

print

display “1”

>>> print(print(1), print(2))

1

2

None None

2
None

print

display “2”

None, None
None

print

display “None None”

More Functions

• The operands of a call expression can be any expression

• What about the expression square?

(demo)

>>> four = describe(square, -2)

Calling function with argument -2

Result was 4

>>> four

4

>>> sixteen = describe(square, four)

Calling function with argument 4

Result was 16

>>> sixteen

16

