Lecture 2: Functions

Brian Hou June 21, 2016

Announcements

Announcements

• Set up your computer and all accounts (Lab 0) by today

- Set up your computer and all accounts (Lab 0) by today
 - Piazza, Instructional (cs61a-??), OK

- Set up your computer and all accounts (Lab 0) by today
 - Piazza, Instructional (cs61a-??), OK
- Discussion sections begin today!

- Set up your computer and all accounts (Lab 0) by today
 - Piazza, Instructional (cs61a-??), OK
- Discussion sections begin today!
- Office hours begin today!

- Set up your computer and all accounts (Lab 0) by today
 - Piazza, Instructional (cs61a-??), OK
- Discussion sections begin today!
- Office hours begin today!
- Homework 0 is due tomorrow (Wednesday) at 11:59pm

- Set up your computer and all accounts (Lab 0) by today
 - Piazza, Instructional (cs61a-??), OK
- Discussion sections begin today!
- Office hours begin today!
- Homework 0 is due tomorrow (Wednesday) at 11:59pm
- Quiz 1 will be on Thursday at the beginning of lecture

Expressions

Primitive expressions, names, and environments

Primitive expressions

• *Expressions* in programs evaluate to values

- *Expressions* in programs evaluate to values
- Primitive expressions evaluate directly to values with minimal work needed

- *Expressions* in programs evaluate to values
- Primitive expressions evaluate directly to values with minimal work needed
 - Numbers (e.g. 42, 3.14, 0)

- *Expressions* in programs evaluate to values
- Primitive expressions evaluate directly to values with minimal work needed
 - Numbers (e.g. 42, 3.14, 0)
 - Names (e.g. pi, add)

- *Expressions* in programs evaluate to values
- Primitive expressions evaluate directly to values with minimal work needed
 - Numbers (e.g. 42, 3.14, 0)
 - Names (e.g. pi, add)
 - *Functions* (later today!)

- *Expressions* in programs evaluate to values
- Primitive expressions evaluate directly to values with minimal work needed
 - Numbers (e.g. 42, 3.14, 0)
 - Names (e.g. pi, add)
 - *Functions* (later today!)
- Some non-primitive expressions: 1 * 2, add(3, 4)

• Giving names to values makes programming easier!

- Giving names to values makes programming easier!
- An assignment statement is one way to bind a name to a value (e.g. x = 1)

- Giving names to values makes programming easier!
- An assignment statement is one way to bind a name to a value (e.g. x = 1)
- Each name can only be bound to one value

- Giving names to values makes programming easier!
- An assignment statement is one way to bind a name to a value (e.g. x = 1)
- Each name can only be bound to one value
 - Environments keep track of names and their values

- Giving names to values makes programming easier!
- An assignment statement is one way to bind a name to a value (e.g. x = 1)
- Each name can only be bound to one value
 - Environments keep track of names and their values

Execution Rule for Assignment Statements:

- Giving names to values makes programming easier!
- An assignment statement is one way to bind a name to a value (e.g. x = 1)
- Each name can only be bound to one value
 - Environments keep track of names and their values

Execution Rule for Assignment Statements:

1. Evaluate all expressions to the right of = from left to right.

- Giving names to values makes programming easier!
- An assignment statement is one way to bind a name to a value (e.g. x = 1)
- Each name can only be bound to one value
 - Environments keep track of names and their values

Execution Rule for Assignment Statements:

- 1. Evaluate all expressions to the right of = from left to right.
- 2. Bind all names to the left of = to those resulting values in the current environment frame.

- Giving names to values makes programming easier!
- An assignment statement is one way to bind a name to a value (e.g. x = 1)
- Each name can only be bound to one value
 - Environments keep track of names and their values

Execution Rule for Assignment Statements:

- 1. Evaluate all expressions to the right of = from left to right.
- 2. Bind all names to the left of = to those resulting values in the current environment frame.

$$1 x = 1$$

$$2 y = x$$

$$Global frame$$

$$x 1$$

$$1 x = 1$$

$$2 y = x$$
Global frame
x 1

Code (left)

Code (left)

Frames (right)

Code (left)

Frames (right)

Each name is bound to a value

Code (left)

Frames (right)

Each name is bound to a value

Code (left)

Frames (right)

Each name is bound to a value

• Environment diagrams visualize the interpreter's progress

Code (left)

Frames (right)

Statements and expressions

Each name is bound to a value

A name cannot be repeated in a frame

• Environment diagrams visualize the interpreter's progress

Code (left)

Frames (right)

Statements and expressions

Each name is bound to a value

A name cannot be repeated in a frame

Functions

Call expressions, functions, and **def** statements

add (2,3)

• Call expressions use functions to compute a value

- Call expressions use functions to compute a value
- The operator and operands themselves are expressions

- Call expressions use functions to compute a value
- The operator and operands themselves are expressions
- To evaluate this call expression:

- Call expressions use functions to compute a value
- The operator and operands themselves are expressions
- To evaluate this call expression:
 - 1. Evaluate the operator to get a function value

- Call expressions use functions to compute a value
- The operator and operands themselves are expressions
- To evaluate this call expression:
 - 1. Evaluate the operator to get a function value
 - 2. Evaluate the operands to get its values

- Call expressions use functions to compute a value
- The operator and operands themselves are expressions
- To evaluate this call expression:
 - 1. Evaluate the operator to get a function value
 - 2. Evaluate the operands to get its values
 - 3. Apply the function to the values of the operands to get the final value

def <name>(<parameters>):
 return <return expression>

Defining functions

Functions have inputs and outputs

def <name>(<parameters>):
 return <return expression>

Defining functions

Functions have inputs and outputs

def <name>(<parameters>):
 return <return expression>

Execution Rule for **def** Statements:

Execution Rule for **def** Statements:

1. Create a function with signature <name>(<parameters>)

Execution Rule for **def** Statements:

- 1. Create a function with signature <name>(<parameters>)
- 2. Set the body of that function to be everything indented after the first line

Execution Rule for **def** Statements:

- 1. Create a function with signature <name>(<parameters>)
- 2. Set the body of that function to be everything indented after the first line
- 3. Bind <name> to that function in the current frame

1 def square(x): 2 return x * x 3 y = square(-2)

Frames	User-defined function
Global frame square	<pre>>func square(x)</pre>
f1: square	

- 1. Create a new environment frame
- 2. Bind the function's parameters to its arguments in that frame
- 3. Execute the body of the function in the new environment

- 1. Create a new environment frame
- 2. Bind the function's parameters to its arguments in that frame
- 3. Execute the body of the function in the new environment
- 1 def square(x): 2 return x * x 3 y = square(-2)
 Global frame
 func square(x):
 square
 f1: square

- 1. Create a new environment frame
- 2. Bind the function's parameters to its arguments in that frame
- 3. Execute the body of the function in the new environment
- 1 def square(x): 2 return x * x 3 y = square(-2)
 Global frame func square(x): square f1: square

- 1. Create a new environment frame
- 2. Bind the function's parameters to its arguments in that frame
- 3. Execute the body of the function in the new environment
- 1 def square(x):
- 2 return x * x
- 3 y = square(-2)

- 1. Create a new environment frame
- 2. Bind the function's parameters to its arguments in that frame
- 3. Execute the body of the function in the new environment

- 1. Create a new environment frame
- 2. Bind the function's parameters to its arguments in that frame
 - 3. Execute the body of the function in the new environment
 - 1 def square(x):
 - 2 return x * x
 - 3 y = square(-2)

- 1. Create a new environment frame
- 2. Bind the function's parameters to its arguments in that frame
 - 3. Execute the body of the function in the new environment
 - 1 def square(x):
 - 2 return x * x
 - 3 y = square(-2)

- 1. Create a new environment frame
- 2. Bind the function's parameters to its arguments in that frame
 - 3. Execute the body of the function in the new environment
 - 1 def square(x):
 - 2 return x * x
 - 3 y = square(-2)

- 1. Create a new environment frame
- 2. Bind the function's parameters to its arguments in that frame
 - 3. Execute the body of the function in the new environment
 - 1 def square(x):
 - 2 return x * x
 - 3 y = square(-2)

Calling user-defined functions

Rules for calling user-defined functions (version 1):

1. Create a new environment frame

2. Bind the function's parameters to its arguments in that frame

3. Execute the body of the function in the new environment

- 1 def square(x):
- 2 return x * x
- 3 y = square(-2)

Calling user-defined functions

Rules for calling user-defined functions (version 1):

1. Create a new environment frame

2. Bind the function's parameters to its arguments in that frame

3. Execute the body of the function in the new environment

- 1 def square(x):
- 2 return x * x
- 3 y = square(-2)

Break!

Environments

 Every expression is evaluated in the context of an environment

- Every expression is evaluated in the context of an environment
- An environment is a sequence of frames

- Every expression is evaluated in the context of an environment
- An environment is a sequence of frames
- So far, there have been two possible environments:

- Every expression is evaluated in the context of an environment
- An environment is a sequence of frames
- So far, there have been two possible environments:
 - The global frame

- Every expression is evaluated in the context of an environment
- An environment is a sequence of frames
- So far, there have been two possible environments:
 - The global frame
 - A function's local frame, then the global frame

- Every expression is evaluated in the context of an environment
- An environment is a sequence of frames
- So far, there have been two possible environments:
 - The global frame
 - A function's local frame, then the global frame

- Every expression is evaluated in the context of an environment
- An environment is a sequence of frames
- So far, there have been two possible environments:
 - The global frame
 - A function's local frame, then the global frame

Rules for looking up names in user-defined functions (version 1):
1. Look it up in the local frame

- Every expression is evaluated in the context of an environment
- An environment is a sequence of frames
- So far, there have been two possible environments:
 - The global frame
 - A function's local frame, then the global frame

- 1. Look it up in the local frame
- 2. If name isn't in local frame, look it up in the global frame

- Every expression is evaluated in the context of an environment
- An environment is a sequence of frames
- So far, there have been two possible environments:
 - The global frame
 - A function's local frame, then the global frame

- 1. Look it up in the local frame
- 2. If name isn't in local frame, look it up in the global frame
- 3. If name isn't in either frame, NameError

- 1. Look it up in the local frame
- 2. If name isn't in local frame, look it up in the global frame
- 3. If name isn't in either frame, NameError

```
>>> def square(x):
```

- ... return x * x
- >>> y = square(square(-2))

- >>> def square(x):
- ... return x * x
- >>> y = square(square(-2))

... return x * x

>>> y = square(square(-2))

Global frame

16

S

(<u>demo</u>)

None and Print

• The special value None represents nothing in Python

- The special value None represents nothing in Python
- A function that does not explicitly return a value will return None

- The special value None represents nothing in Python
- A function that does not explicitly return a value will return None
- Note: None is not displayed by the interpreter as the value of an expression

- The special value None represents nothing in Python
- A function that does not explicitly return a value will return None
- Note: None is not displayed by the interpreter as the value of an expression

```
>>> def does_not_square(x):
... x * x
```

- The special value None represents nothing in Python
- A function that does not explicitly return a value will return None
- Note: None is not displayed by the interpreter as the value of an expression

>>> **def** does not square(x):

No return $> \dots$

x * x

- The special value None represents nothing in Python
- A function that does not explicitly return a value will return None
- Note: None is not displayed by the interpreter as the value of an expression

>>> **def** does not square(x):

No return

× • • • • × × ×

>>> does_not_square(-2)

- The special value None represents nothing in Python
- A function that does not explicitly return a value will return None
- Note: None is not displayed by the interpreter as the value of an expression

- The special value None represents nothing in Python
- A function that does not explicitly return a value will return None
- Note: None is not displayed by the interpreter as the value of an expression

>>> not_four = does_not_square(-2)

- The special value None represents nothing in Python
- A function that does not explicitly return a value will return None
- Note: None is not displayed by the interpreter as the value of an expression

None means that nothing is returned

- The special value None represents nothing in Python
- A function that does not explicitly return a value will return None
- Note: None is not displayed by the interpreter as the value of an expression

None means that nothing is returned

- The special value None represents nothing in Python
- A function that does not explicitly return a value will return None
- Note: None is not displayed by the interpreter as the value of an expression

Pure functions just return values

Non-Pure functions have side effects

Non-Pure functions have side effects

Non-Pure functions have side effects

>>> print(print(1), print(2))

>>> print(print(1), print(2))

More Functions

More Functions

• The operands of a call expression can be any expression

More Functions

- The operands of a call expression can be any expression
- What about the expression **square**?

- The operands of a call expression can be any expression
- What about the expression **square**?

```
>>> four = describe(square, -2)
```

- The operands of a call expression can be any expression
- What about the expression **square**?

```
>>> four = describe(square, -2)
Calling function with argument -2
Result was 4
```

- The operands of a call expression can be any expression
- What about the expression **square**?

```
>>> four = describe(square, -2)
Calling function with argument -2
Result was 4
>>> four
```

- The operands of a call expression can be any expression
- What about the expression square?

```
>>> four = describe(square, -2)
Calling function with argument -2
Result was 4
>>> four
4
```

- The operands of a call expression can be any expression
- What about the expression square?

```
>>> four = describe(square, -2)
Calling function with argument -2
Result was 4
>>> four
4
```

>>> sixteen = describe(square, four)

- The operands of a call expression can be any expression
- What about the expression square?

```
>>> four = describe(square, -2)
Calling function with argument -2
Result was 4
>>> four
4
>>> sixteen = describe(square, four)
Calling function with argument 4
Result was 16
```

- The operands of a call expression can be any expression
- What about the expression square?

```
>>> four = describe(square, -2)
Calling function with argument -2
Result was 4
>>> four
4
>>> sixteen = describe(square, four)
Calling function with argument 4
Result was 16
>>> sixteen
```

- The operands of a call expression can be any expression
- What about the expression square?

```
>>> four = describe(square, -2)
Calling function with argument -2
Result was 4
>>> four
4
>>> sixteen = describe(square, four)
Calling function with argument 4
Result was 16
>>> sixteen
16
```

- The operands of a call expression can be any expression
- What about the expression **square**?

```
>>> four = describe(square, -2)
Calling function with argument -2
Result was 4
>>> four
4
>>> sixteen = describe(square, four)
Calling function with argument 4
Result was 16
>>> sixteen
```