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Announcements

• Set up your computer and all accounts (Lab 0) by today
• Piazza, Instructional (cs61a-??), OK

• Discussion sections begin today!
• Office hours begin today!
• Homework 0 is due tomorrow (Wednesday) at 11:59pm
• Quiz 1 will be on Thursday at the beginning of lecture
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Primitive expressions

• Expressions in programs evaluate to values
• Primitive expressions evaluate directly to values with 

minimal work needed
• Numbers (e.g. 42, 3.14, 0)
• Names (e.g. pi, add)
• Functions (later today!)

• Some non-primitive expressions: 1 * 2, add(3, 4)



Names



Names

• Giving names to values makes programming easier!



Names

• Giving names to values makes programming easier!
• An assignment statement is one way to bind a name to a 

value (e.g. x = 1)



Names

• Giving names to values makes programming easier!
• An assignment statement is one way to bind a name to a 

value (e.g. x = 1)
• Each name can only be bound to one value



Names

• Giving names to values makes programming easier!
• An assignment statement is one way to bind a name to a 

value (e.g. x = 1)
• Each name can only be bound to one value

• Environments keep track of names and their values



Names

• Giving names to values makes programming easier!
• An assignment statement is one way to bind a name to a 

value (e.g. x = 1)
• Each name can only be bound to one value

• Environments keep track of names and their values

Execution Rule for Assignment Statements:



Names

• Giving names to values makes programming easier!
• An assignment statement is one way to bind a name to a 

value (e.g. x = 1)
• Each name can only be bound to one value

• Environments keep track of names and their values

Execution Rule for Assignment Statements:

1. Evaluate all expressions to the right of = from left to right.



Names

• Giving names to values makes programming easier!
• An assignment statement is one way to bind a name to a 

value (e.g. x = 1)
• Each name can only be bound to one value

• Environments keep track of names and their values

Execution Rule for Assignment Statements:

1. Evaluate all expressions to the right of = from left to right.

2. Bind all names to the left of = to those resulting values in the 
current environment frame.



Names

• Giving names to values makes programming easier!
• An assignment statement is one way to bind a name to a 

value (e.g. x = 1)
• Each name can only be bound to one value

• Environments keep track of names and their values

(demo)

Execution Rule for Assignment Statements:

1. Evaluate all expressions to the right of = from left to right.

2. Bind all names to the left of = to those resulting values in the 
current environment frame.
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• Environment diagrams visualize the interpreter's progress

Environment diagrams

Frames (right)

Each name is bound to a value

A name cannot be repeated in a frame

Code (left)

Statements and expressions

Just executed

Next to execute Assignment statement

Name Value

(demo)

http://pythontutor.com/composingprograms.html#code=x+%3D+1%0Ay+%3D+x%0Ax+%3D+2%0Ay&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0
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Call expressions

• Call expressions use functions to compute a value
• The operator and operands themselves are expressions
• To evaluate this call expression:

1. Evaluate the operator to get a function value

2. Evaluate the operands to get its values

3. Apply the function to the values of the operands to 
get the final value

add ( 2 , 3 )
operator operands
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Defining functions

• Functions have inputs and outputs

Execution Rule for def Statements:

1. Create a function with signature <name>(<parameters>)

2. Set the body of that function to be everything indented after 
the first line

3. Bind <name> to that function in the current frame

def <name>(<parameters>):
    return <return expression>

def square(x):
    return x * x
y = square(-2)

Function body defines computation 
performed when function is applied

Function signature indicates name and number of arguments
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Calling user-defined functions

Rules for calling user-defined functions (version 1): 

1. Create a new environment frame 

2. Bind the function's parameters to its arguments in that frame 

3. Execute the body of the function in the new environment

Return value 
(not a binding!)



Break!
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Rules for looking up names in user-defined functions (version 1): 

1. Look it up in the local frame 

2. If name isn't in local frame, look it up in the global frame 

3. If name isn't in either frame, NameError
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Pure and non-pure functions

-2 print
Returns None!

None

Python displays the output “-2”

2, 3

3
max

Pure functions 
just return values

Non-Pure functions 
have side effects

A side effect isn't a 
value; it's anything 
that happens as a 
consequence of 

calling a function

2 Arguments

Return value
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1
None

print

display “1”

>>> print(print(1), print(2))

1

2

None None

2
None

print

display “2”

None, None
None

print

display “None None”
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More Functions

• The operands of a call expression can be any expression
• What about the expression square?

(demo)

>>> four = describe(square, -2)

Calling function with argument -2

Result was 4

>>> four

4

>>> sixteen = describe(square, four)
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Result was 16

>>> sixteen
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