
Marvin Zhang
06/22/2016

Lecture 3: Control

Announcements

• Do HW0! Due today (Wednesday, 6/22) at 11:59pm
• First quiz is tomorrow at the beginning of lecture 

(yes, this class moves fast…)
• How should I prepare? Read this Piazza post

• Go to lab today! Each lab is worth two points
• Go to discussion tomorrow! Each discussion is worth two

exam recovery points
• If you do poorly (< 20 points) on the midterm or final,

exam recovery points can help you make up a portion of
the lost points, up to a score of 19.5

• Details on 
cs61a.org/articles/about.html#discussion-participation

• Ask questions during lecture on Piazza! Read this post

https://piazza.com/class/ipkfex1ne3p56y?cid=72
http://cs61a.org/articles/about.html#discussion-participation
https://piazza.com/class/ipkfex1ne3p56y?cid=74

Functions Review

• The operands of a call expression can be
any expression

• This includes expressions that evaluate to
functions, such as function names!

Interactive Diagram

http://pythontutor.com/composingprograms.html#code=def+square(x%29%3A%0A++++return+x+*+x%0A%0Adef+describe(f,+x%29%3A%0A++++%22%22%22%0A++++%3E%3E%3E+four+%3D+describe(square,+-2%29%0A++++Calling+function+with+argument+-2%0A++++Result+was+4%0A++++%3E%3E%3E+four%0A++++4%0A++++%22%22%22%0A++++print('Calling+function+with+argument',+x%29%0A++++result+%3D+f(x%29%0A++++print('Result+was',+result%29%0A++++return+result%0A%0Afour+%3D+describe(square,+-2%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0

Roadmap

• This week (Introduction), the goals are:
• To learn the fundamentals of

programming
• To become comfortable with Python

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Control

• So far, our programs have included:
• Expressions (call expressions in particular)
• Assignment and def statements

• But this is not enough to (easily) write most useful programs

• For example, how would you write a function that:
• Returns the absolute value of a number?
• Returns the factorial of a number?

• These functions are easy to write if we introduce control
• Special expressions and statements can control how the

program is executed by the interpreter

if statements and Boolean operators

Conditionals

Conditional statements

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 else:
 return x

Execution Rule for Conditional Statements:

Each header is considered in order.

1. Evaluate the header's expression, if the header is not an else.

2. If the expression is a true value or the header is an else,
execute the suite & skip the remaining headers.

Syntax:

• Always starts with if clause.

• Zero or more elif clauses.

• Zero or one else clause, 
always at the end.

(demo)

Boolean contexts

George Boole

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 else:
 return x

Execution Rule for Conditional Statements:

Each header is considered in order.

1. Evaluate the header's expression, if the
header is not an else.

2. If the expression is a true value or the
header is an else, execute the suite & skip
the remaining headers.

False values in Python: False, None, 0, 0.0, '', []

True values in Python: Everything else

(more to come)

Boolean context

Boolean expressions

• Expressions that contain special operators and, or, not

• not <exp> evaluates to True if <exp> is a false value, 
 False if <exp> is a true value

• Special short-circuiting behavior:

• <left> and <right> does not evaluate <right> if <left>
evaluates to a false value

• <left> or <right> does not evaluate <right> if <left>
evaluates to a true value

• 0 and 1/0 evaluates to 0, 0 or 1/0 gives an error

(demo)

while loops, Sequences, and for loops

Iteration

while loops (demo)

def factorial(n):
 """Return the factorial of n."""
 i, total = 1, 1
 while i < n:
 i += 1
 total *= i
 return total

Execution Rule for while Statements:

1. Evaluate the header’s expression.

2. If it is a true value, execute the suite, then return to step 1.

Sequences and for loops (demo)

def factorial(n):
 """Return the factorial of n."""
 total = 1
 for i in range(1, n+1):
 total *= i
 return total

Execution Rule for for Statements:

1. Evaluate the sequence in the header’s expression.

2. For each value in the sequence, in order:

1. Bind the name in the header’s expression to that value.

2. Execute the suite.

Summary

• Control allows the interpreter to selectively or
repeatedly execute parts of our program

• Conditionals allows for different behavior based on the
input to and state of the program
• Using this, we wrote an absolute value function

• Iteration allows for parts of our program to be
repeatedly executed a specific number of times
• Using this, we wrote a factorial function

• Putting it all together: let’s look at one more example

(demo)

