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• Homework 1 is due Sunday 6/26
• Project 1 is released, due Thursday 6/30

• Earn 1 EC point for completing it by Wednesday 6/29
• Go to discussion today! Each discussion is worth two exam 

recovery points

• Ask questions during lecture on Piazza!
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Roadmap

• This week (Introduction), the goals are: 
• To learn the fundamentals of 

programming 
• To become comfortable with Python
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Abstraction

"The essence of abstraction is preserving information that 
is relevant in a given context, and forgetting information 
that is irrelevant in that context." 

- John V. Guttag, Introduction to Computation and 
Programming Using Python
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Discussion Question 1

def pyramid(n):
    a, b, total = 0, n, 0
    while b:
        a, b = a+1, b-1
        total = total + a + b
    return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

a b

square(4)
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Tools for abstraction

• Assignment is a simple form of abstraction: bind names to 
values

• Function definition is a more powerful form of 
abstraction: bind names to a series of computations

• Functional abstraction is the idea that we can call 
functions without thinking about how the function works

square ?

square ?
sqrt ?

add ?
3

4 5



Miscellaneous Python features

• Operators 
• Multiple return values 
• Docstrings 
• Doctests 
• Default arguments

(demo)
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Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)

16

An expression: this one 
evaluates to a number

Also an expression: 
evaluates to a function

Important: No "return" keyword!
A function

with parameter x
that returns the value of "x * x"

Must be a single expression

Lambda expressions aren't common in Python, but important in general

Lambda expressions in Python cannot contain statements at all!
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