
Brian Hou
June 21, 2016

Lecture 4: Environment Diagrams

Announcements

Announcements

• Homework 1 is due Sunday 6/26

Announcements

• Homework 1 is due Sunday 6/26
• Project 1 is released, due Thursday 6/30

Announcements

• Homework 1 is due Sunday 6/26
• Project 1 is released, due Thursday 6/30

• Earn 1 EC point for completing it by Wednesday 6/29

Announcements

• Homework 1 is due Sunday 6/26
• Project 1 is released, due Thursday 6/30

• Earn 1 EC point for completing it by Wednesday 6/29
• Go to discussion today! Each discussion is worth two exam

recovery points

Announcements

• Homework 1 is due Sunday 6/26
• Project 1 is released, due Thursday 6/30

• Earn 1 EC point for completing it by Wednesday 6/29
• Go to discussion today! Each discussion is worth two exam

recovery points

• Ask questions during lecture on Piazza!

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Introduction), the goals are:
• To learn the fundamentals of

programming
• To become comfortable with Python

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Abstraction

Abstraction

"The essence of abstraction is preserving information that
is relevant in a given context, and forgetting information
that is irrelevant in that context."

- John V. Guttag, Introduction to Computation and
Programming Using Python

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

pyramid(4)

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

b

pyramid(4)

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

b

pyramid(4)

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

b

pyramid(4)

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

b

pyramid(4)

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

b

pyramid(4)

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

a b

pyramid(4)

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

a b

pyramid(4)

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

a b

pyramid(4)

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

a b

pyramid(4)

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

a b

pyramid(4)

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

a b

pyramid(4)

Discussion Question 1

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

What does pyramid compute?

a b

square(4)

Tools for abstraction

Tools for abstraction

• Assignment is a simple form of abstraction: bind names to
values

Tools for abstraction

• Assignment is a simple form of abstraction: bind names to
values

• Function definition is a more powerful form of
abstraction: bind names to a series of computations

Tools for abstraction

• Assignment is a simple form of abstraction: bind names to
values

• Function definition is a more powerful form of
abstraction: bind names to a series of computations

• Functional abstraction is the idea that we can call
functions without thinking about how the function works

Tools for abstraction

• Assignment is a simple form of abstraction: bind names to
values

• Function definition is a more powerful form of
abstraction: bind names to a series of computations

• Functional abstraction is the idea that we can call
functions without thinking about how the function works

square ?3

Tools for abstraction

• Assignment is a simple form of abstraction: bind names to
values

• Function definition is a more powerful form of
abstraction: bind names to a series of computations

• Functional abstraction is the idea that we can call
functions without thinking about how the function works

square ?

square ?

3

4

Tools for abstraction

• Assignment is a simple form of abstraction: bind names to
values

• Function definition is a more powerful form of
abstraction: bind names to a series of computations

• Functional abstraction is the idea that we can call
functions without thinking about how the function works

square ?

square ?

3

4

Tools for abstraction

• Assignment is a simple form of abstraction: bind names to
values

• Function definition is a more powerful form of
abstraction: bind names to a series of computations

• Functional abstraction is the idea that we can call
functions without thinking about how the function works

square ?

square ?

add ?
3

4

Tools for abstraction

• Assignment is a simple form of abstraction: bind names to
values

• Function definition is a more powerful form of
abstraction: bind names to a series of computations

• Functional abstraction is the idea that we can call
functions without thinking about how the function works

square ?

square ?

add ?
3

4

Tools for abstraction

• Assignment is a simple form of abstraction: bind names to
values

• Function definition is a more powerful form of
abstraction: bind names to a series of computations

• Functional abstraction is the idea that we can call
functions without thinking about how the function works

square ?

square ?
sqrt ?

add ?
3

4

Tools for abstraction

• Assignment is a simple form of abstraction: bind names to
values

• Function definition is a more powerful form of
abstraction: bind names to a series of computations

• Functional abstraction is the idea that we can call
functions without thinking about how the function works

square ?

square ?
sqrt ?

add ?
3

4 5

Miscellaneous Python features

• Operators
• Multiple return values
• Docstrings
• Doctests
• Default arguments

(demo)

Environment Diagrams

Lists and for Loops

Lists and for Loops

s = [3, 1, 4, 1, 5, 9]

Lists and for Loops

s = [3, 1, 4, 1, 5, 9]

def max_difference(s):

Lists and for Loops

s = [3, 1, 4, 1, 5, 9]

def max_difference(s):

 smallest = s[0]

Lists and for Loops

s = [3, 1, 4, 1, 5, 9]

def max_difference(s):

 smallest = s[0]

 largest = s[0]

Lists and for Loops

s = [3, 1, 4, 1, 5, 9]

def max_difference(s):

 smallest = s[0]

 largest = s[0]

 for elem in s:

Lists and for Loops

s = [3, 1, 4, 1, 5, 9]

def max_difference(s):

 smallest = s[0]

 largest = s[0]

 for elem in s:

 if elem < smallest:

Lists and for Loops

s = [3, 1, 4, 1, 5, 9]

def max_difference(s):

 smallest = s[0]

 largest = s[0]

 for elem in s:

 if elem < smallest:

 smallest = elem

Lists and for Loops

s = [3, 1, 4, 1, 5, 9]

def max_difference(s):

 smallest = s[0]

 largest = s[0]

 for elem in s:

 if elem < smallest:

 smallest = elem

 if elem > largest:

Lists and for Loops

s = [3, 1, 4, 1, 5, 9]

def max_difference(s):

 smallest = s[0]

 largest = s[0]

 for elem in s:

 if elem < smallest:

 smallest = elem

 if elem > largest:

 largest = elem

Lists and for Loops

s = [3, 1, 4, 1, 5, 9]

def max_difference(s):

 smallest = s[0]

 largest = s[0]

 for elem in s:

 if elem < smallest:

 smallest = elem

 if elem > largest:

 largest = elem

 return largest - smallest

Lists and for Loops

s = [3, 1, 4, 1, 5, 9]

def max_difference(s):

 smallest = s[0]

 largest = s[0]

 for elem in s:

 if elem < smallest:

 smallest = elem

 if elem > largest:

 largest = elem

 return largest - smallest

max_difference(s)

Lists and for Loops

s = [3, 1, 4, 1, 5, 9]

def max_difference(s):

 smallest = s[0]

 largest = s[0]

 for elem in s:

 if elem < smallest:

 smallest = elem

 if elem > largest:

 largest = elem

 return largest - smallest

max_difference(s)

(demo)

Functions and while loops

Functions and while loops

x = 2

Functions and while loops

x = 2

def repeated(f, n, x):

Functions and while loops

x = 2

def repeated(f, n, x):

 while n > 0:

Functions and while loops

x = 2

def repeated(f, n, x):

 while n > 0:

 x = f(x)

Functions and while loops

x = 2

def repeated(f, n, x):

 while n > 0:

 x = f(x)

 n -= 1

Functions and while loops

x = 2

def repeated(f, n, x):

 while n > 0:

 x = f(x)

 n -= 1

 return x

Functions and while loops

x = 2

def repeated(f, n, x):

 while n > 0:

 x = f(x)

 n -= 1

 return x

def square(x):

Functions and while loops

x = 2

def repeated(f, n, x):

 while n > 0:

 x = f(x)

 n -= 1

 return x

def square(x):

 return x * x

Functions and while loops

x = 2

def repeated(f, n, x):

 while n > 0:

 x = f(x)

 n -= 1

 return x

def square(x):

 return x * x

repeated(square, x, 3)

Functions and while loops

x = 2

def repeated(f, n, x):

 while n > 0:

 x = f(x)

 n -= 1

 return x

def square(x):

 return x * x

repeated(square, x, 3)

(demo)

Lambda Expressions

Lambda Expressions

Lambda Expressions

>>> x = 10

Lambda Expressions

>>> x = 10

>>> square = x * x

Lambda Expressions

>>> x = 10

>>> square = x * x

An expression: this one
evaluates to a number

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

Important: No "return" keyword!

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

Important: No "return" keyword!
A function

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

Important: No "return" keyword!
A function

with parameter x

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

Important: No "return" keyword!
A function

with parameter x
that returns the value of "x * x"

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

Important: No "return" keyword!
A function

with parameter x
that returns the value of "x * x"

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)

16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

Important: No "return" keyword!
A function

with parameter x
that returns the value of "x * x"

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)

16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

Important: No "return" keyword!
A function

with parameter x
that returns the value of "x * x"

Must be a single expression

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)

16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

Important: No "return" keyword!
A function

with parameter x
that returns the value of "x * x"

Must be a single expression

Lambda expressions in Python cannot contain statements at all!

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)

16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

Important: No "return" keyword!
A function

with parameter x
that returns the value of "x * x"

Must be a single expression

Lambda expressions aren't common in Python, but important in general

Lambda expressions in Python cannot contain statements at all!

lambda

x = 2

def repeated(f, n, x):

 while n > 0:

 x = f(x)

 n -= 1

 return x

def square(x):

 return x * x

repeated(square, x, 3)

lambda

x = 2

def repeated(f, n, x):

 while n > 0:

 x = f(x)

 n -= 1

 return x

def square(x):

 return x * x

repeated(square, x, 3)

x = 2

def repeated(f, n, x):

 while n > 0:

 x = f(x)

 n -= 1

 return x

square = lambda x: x * x

repeated(square, x, 3)

lambda

x = 2

def repeated(f, n, x):

 while n > 0:

 x = f(x)

 n -= 1

 return x

def square(x):

 return x * x

repeated(square, x, 3)

x = 2

def repeated(f, n, x):

 while n > 0:

 x = f(x)

 n -= 1

 return x

square = lambda x: x * x

repeated(square, x, 3)

(demo)

lambda

lambda

lambda

lambda

lambda

