Lecture 5: Higher-Order Functions
Brian Hou June 27, 2016

Announcements

- Homework 2 is due Wednesday 6/29
- Project 1 is due Thursday $6 / 30$
- Earn 1 EC point for completing it by Wednesday 6/29
- Quiz 2 is on Thursday $6 / 30$ at the beginning of lecture
- Environment Diagrams and Higher-Order Functions
- Group Tutoring is available! See Piazza for details

Roadmap	
Introduction	
Functions	This week (Functions), the goals are:
Data	- To understand the idea of functional abstraction
Mutability	- To study this idea through:
Objects	- recursion
Interpretation	- orders of growth
Paradigms	
Applications	

Higher-Order Functions

Generalizing Computations	(demo)	Generalizing Computations (demo)
$\begin{gathered} \sum_{k=1}^{5} k=1+2+3+4+5 \\ \sum_{k=1}^{5}=11^{3}+2^{3}+3^{3}+4^{3}+5^{3} \\ \sum_{k=1}^{5} \frac{8}{(4 k-3) \cdot(4 k-1)}=\frac{8}{3}+\frac{8}{35}+\frac{8}{99}+\frac{8}{195}+\frac{8}{323} \end{gathered}$	$=15$ $=225$ $=3.04$	```def sum_naturalsy(n): total, k = 0, 1 while k <= n: total, k = total + k k + 1 return total def sum_cubes(n): total, k = 0, 1 while k <= n: total, k = total + pow (k, 3);, k + 1 return total```

Summation Example	
cube $=1$ ambda $\mathrm{k}:$ pow $(\mathbf{k}, 3):\left\{\begin{array}{c}\text { Function of a single } \\ \text { argument (not called "term") }\end{array}\right.$	
$\begin{gathered} \text { def summation(} \mathrm{n}, \mathrm{term}) \leqslant \\ \text { " } " \text { "Sum the first } \mathrm{N} \text { terms of a sequence. } \end{gathered}$	
>>> summation(5, cube)	
$225 \quad \begin{gathered}\text { The cube function is passed } \\ \text { as an argument value }\end{gathered}$	
total, $\mathrm{k}=0,1 \quad$The function bound to term gets called herewhile $\mathrm{k}<=\mathrm{n}:$	
return total	

- Functions defined within other function bodies are bound to names in a local frame

$$
\text { def make_adder } \frac{\text { A function that }}{\text { returns a function }} \begin{gathered}
\text { return a function that takes one argument } K
\end{gathered}
$$

Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our programming language

Higher-order function:

Break!

1. A function that takes a function as an argument value or 2. A function that returns a function as a return value

Higher-order functions:

- Express general methods of computation
- Remove repetition from programs
- Separate concerns among functions

| Break! |
| :--- | :--- |
| |
| |
| |

Environments (Round 2)

Environment Diagram Rules (version 2)
Rules for def Statements:
1. Create a function with signature <name>(<parameters>) and parent [parent=<label>] (parent is the current frame) fi: : make_adder func adder (k) [parent=f=1]
2. Set the body of that function to be everything indented after the first line
3. Bind <name> to that function in the current frame
Rules for calling user-defined functions:
1. Create a new environment frame
2. Copy the parent of the function to the local frame: [parent=<label>]
3. Bind the function's parameters to its arguments in that frame
4. Execute the body of the function in the new environment

Function Composition

Application: Currying

- add is a two-argument function that returns the sum of the two arguments
- make_adder is a one-argument function that returns a oneargument function that returns the sum of the two argument f
- Currying allows us to represent functions with multiple variables as chains of functions with single variables
- It is named after mathematician and logician Haskell Brooks Curry (who rediscovered it after Moses Schönfinkel)
(lambda $\mathrm{x}, \mathrm{y}: \mathrm{x} * \mathrm{y}+1)(3,4)$
lambda $\mathrm{x}: ~ \mathrm{lambda} \mathrm{y}: \mathrm{x} * \mathrm{y}+1)(3)(4$

