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Announcements

• Homework 2 is due Wednesday 6/29
• Project 1 is due Thursday 6/30

• Earn 1 EC point for completing it by Wednesday 6/29
• Quiz 2 is on Thursday 6/30 at the beginning of lecture

• Environment Diagrams and Higher-Order Functions
• Group Tutoring is available! See Piazza for details
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Roadmap

• This week (Functions), the goals are: 
• To understand the idea of 

functional abstraction 
• To study this idea through: 

• higher-order functions 
• recursion 
• orders of growth

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications



Higher-Order Functions



Generalizing Computations



Generalizing Computations

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04



Generalizing Computations

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04



Generalizing Computations

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04



Generalizing Computations

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04



Generalizing Computations (demo)
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def sum_naturals(n):

    total, k = 0, 1

    while k <= n:

        total, k = total + k, k + 1

    return total

(demo)
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Summation Example

cube = lambda k: pow(k, 3)

def summation(n, term):

    """Sum the first N terms of a sequence.

    >>> summation(5, cube)

    225

    """

    total, k = 0, 1

    while k <= n:

        total, k = total + term(k), k + 1

    return total

Function of a single 
argument (not called "term")

A parameter that will be 
bound to a function

The cube function is passed 
as an argument value

The function bound to 
term gets called here
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Higher-Order Functions

Functions are first-class: Functions can be manipulated as 
values in our programming language

Higher-order function:

1. A function that takes a function as an argument value or

2. A function that returns a function as a return value

Higher-order functions:
• Express general methods of computation
• Remove repetition from programs
• Separate concerns among functions
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Nested def

• Every user-defined function 
has a parent frame

• The parent of a function is 
the frame in which it was 
defined

• Every local frame has a 
parent frame

• The parent of a frame is the 
parent of the function called
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Environment Diagram Rules (version 2)

Rules for def Statements: 

1. Create a function with signature <name>(<parameters>) and 
parent [parent=<label>] (parent is the current frame) 

2. Set the body of that function to be everything indented after 
the first line 

3. Bind <name> to that function in the current frame

Rules for calling user-defined functions: 

1. Create a new environment frame 

2. Copy the parent of the function to the local frame: 
[parent=<label>] 

3. Bind the function's parameters to its arguments in that frame 

4. Execute the body of the function in the new environment
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Application: Currying

• add is a two-argument function that returns the sum of the 
two arguments

• make_adder is a one-argument function that returns a one-
argument function that returns the sum of the two 
arguments

• Currying allows us to represent functions with multiple 
variables as chains of functions with single variables

• It is named after mathematician and logician Haskell Curry 
(who rediscovered it after Moses Schönfinkel)

(lambda x, y: x * y + 1)(3, 4)

(lambda x: lambda y: x * y + 1)(3)(4)

• It is named after mathematician and logician Haskell 
Brooks Curry (who rediscovered it after Moses Schönfinkel)


