Lecture 5: Higher-Order Functions

Brian Hou
June 27, 2016

Announcements

Announcements

- Homework 2 is due Wednesday 6/29

Announcements

- Homework 2 is due Wednesday 6/29
- Project 1 is due Thursday 6/30

Announcements

- Homework 2 is due Wednesday 6/29
- Project 1 is due Thursday 6/30
- Earn 1 EC point for completing it by Wednesday 6/29

Announcements

- Homework 2 is due Wednesday 6/29
- Project 1 is due Thursday 6/30
- Earn 1 EC point for completing it by Wednesday 6/29
- Quiz 2 is on Thursday $6 / 30$ at the beginning of lecture

Announcements

- Homework 2 is due Wednesday 6/29
- Project 1 is due Thursday 6/30
- Earn 1 EC point for completing it by Wednesday 6/29
- Quiz 2 is on Thursday 6/30 at the beginning of lecture
- Environment Diagrams and Higher-Order Functions

Announcements

- Homework 2 is due Wednesday 6/29
- Project 1 is due Thursday 6/30
- Earn 1 EC point for completing it by Wednesday 6/29
- Quiz 2 is on Thursday 6/30 at the beginning of lecture
- Environment Diagrams and Higher-Order Functions
- Group Tutoring is available! See Piazza for details

Roadmap

Introduction
Functions
Data
Mutability
Objects
Interpretation
Paradigms
Applications

Roadmap

Introduction

Functions

Data
Mutability
Objects
Interpretation
Paradigms
Applications

- This week (Functions), the goals are:
- To understand the idea of functional abstraction
- To study this idea through:
- higher-order functions
- recursion
- orders of growth

Higher-Order Functions

Generalizing Computations

Generalizing Computations

$$
\begin{array}{cc}
\sum_{k=1}^{5} k=1+2+3+4+5 & =15 \\
\sum_{k=1}^{5} k^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3} & =225 \\
\sum_{k=1}^{5} \frac{8}{(4 k-3) \cdot(4 k-1)}=\frac{8}{3}+\frac{8}{35}+\frac{8}{99}+\frac{8}{195}+\frac{8}{323} & =3.04
\end{array}
$$

Generalizing Computations

$$
\begin{array}{cl}
\sum_{k=1}^{5} k=1+2+3+4+5 & =15 \\
\sum_{k=1}^{5} k^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3} & =225 \\
\sum_{k=1}^{5} \frac{8}{(4 k-3) \cdot(4 k-1)}=\frac{8}{3}+\frac{8}{35}+\frac{8}{99}+\frac{8}{195}+\frac{8}{323} & =3.04
\end{array}
$$

Generalizing Computations

$$
\begin{array}{cl}
\sum_{k=1}^{5} k=1+2+3+4+5 & =15 \\
\sum_{k=1}^{5} k^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3} & =225 \\
\sum_{k=1}^{5} \frac{8}{(4 k-3) \cdot(4 k-1)}=\frac{8}{3}+\frac{8}{35}+\frac{8}{99}+\frac{8}{195}+\frac{8}{323} & =3.04
\end{array}
$$

Generalizing Computations

$$
\begin{array}{cc}
\sum_{k=1}^{5}=1+2+3+4+5 & =15 \\
\sum_{k=1}^{5} k^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3} & =225 \\
\sum_{k=1}^{5} \frac{8}{(4 k-3) \cdot(4 k-1)}=\frac{8}{3}+\frac{8}{35}+\frac{8}{99}+\frac{8}{195}+\frac{8}{323} & =3.04
\end{array}
$$

Generalizing Computations

(demo)

$$
\sum_{k=1}^{5} k=1+2+3+4+5 \quad=15
$$

$$
\sum_{k=1}^{5}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3} \quad=225
$$

$$
\sum_{k=1}^{5} \frac{8}{(4 k-3) \cdot(4 k-1)}=\frac{8}{3}+\frac{8}{35}+\frac{8}{99}+\frac{8}{195}+\frac{8}{323} \quad=3.04
$$

Generalizing Computations

```
def sum_naturals(n):
    total, k = 0, 1
    while k <= n:
        total, k = total + k, k + 1
    return total
def sum_cubes(n):
    total, k = 0, 1
    while k <= n:
        total, k = total + pow(k, 3), k + 1
    return total
```


Generalizing Computations

```
def sum_naturals(n):
    total, k = 0, 1
    while k <= n:
```

 total, \(k=\) total \(+k, k+1\)
 return total
    ```
def sum_cubes!(n):
    total, k = 0, 1
    while k <= n:
```

 total, \(k=\) total \(+\operatorname{pow}(k, 3), k+1\)
 return total

Generalizing Computations

```
def:sum_naturals!(n ) :
    total, k = 0, 1
    while k <= n:
        total, k = total + k k + 1
    return total
def sum_cubes!(n ) :
    total, k = 0, 1
    while k <= n:
        total, k = total + pow(k, 3)!, k + 1
    return total
```


Generalizing Computations

(demo)

```
def sum_naturals:(n):
    total, k = 0, 1
    while k <= n:
        total, k = total + k k + 1
    return total
def sum_cubes!(n):
    total, k = 0, 1
    while k <= n:
        total, k = total + pow(k, 3)!, k + 1
    return total
```


Summation Example

```
cube = lambda k: pow(k, 3)
def summation(n, term):
    """Sum the first N terms of a sequence.
>>> summation(5, cube)
225
" " "
total, k = 0, 1
while k <= n:
```

```
total, k = total + term(k), k + 1
```

total, k = total + term(k), k + 1
return total

```

\section*{Summation Example}

def summation(n, term):
>>> summation(5, cube)

225
" " "
total, \(k=0,1\)
while \(k<=n\) :
\[
\text { total, } k=\text { total }+\operatorname{term}(k), k+1
\]
return total

\section*{Summation Example}

```

def summation(n,term):{ {}\begin{array}{l}{\mathrm{ A parameter that will be }}
{\mathrm{ bound to a function }}
"""Sum the first N terms of a sequence.
>>> summation(5, cube)
225
"""
total, k = 0, 1
while k <= n:
total, k = total + term(k), k + 1
return total

```

\section*{Summation Example}
Function of a single
cube = lambda k: pow(k, 3): argument (not called "term")
def summation \(\left(n, t a c:\left\{\begin{array}{c}\text { A parameter that will be } \\ \text { bound to a function }\end{array}\right.\right.\) "" "Sum the first N terms of a sequence.
>>> summation(5, cube)
225
" " "
total, \(\mathrm{k}=0,1\)
while \(\mathrm{k}<=\mathrm{n}\) :
\[
\text { total, } \mathrm{k}=\text { total }+\operatorname{term}(\mathrm{k})!\mathrm{k}+1
\]
return total

\section*{Summation Example}


\section*{Locally Defined Functions}

\section*{Locally Defined Functions \\ (demo)}

\section*{Locally Defined Functions}

\section*{(demo)}
- Functions defined within other function bodies are bound to names in a local frame

\section*{Locally Defined Functions}

\section*{(demo)}
- Functions defined within other function bodies are bound to names in a local frame
def make_adder(n):
```

 """Return a function that takes one argument K
 and returns K + N.
 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder
    ```

\section*{Locally Defined Functions}

\section*{(demo)}
- Functions defined within other function bodies are bound to names in a local frame

    """Return a function that takes one argument \(K\)
    and returns \(\mathrm{K}+\mathrm{N}\).
    >>> add_three = make_adder(3)
    >>> add_three(4)
    7
" " "
def adder(k):
return \(k+n\)
return adder

\section*{Locally Defined Functions}

\section*{(demo)}
- Functions defined within other function bodies are bound to names in a local frame

    """Return a function that takes one argument \(K\)

    >>> add_three = make_adder (3):
    bound to a function
    >>> add_three(4)
    7
" " "
def adder(k):
return \(k+n\)
return adder

\section*{Locally Defined Functions}

\section*{(demo)}
- Functions defined within other function bodies are bound to names in a local frame

>>> add_three(4)

return adder

\section*{Locally Defined Functions}

\section*{(demo)}
- Functions defined within other function bodies are bound to names in a local frame


\section*{Locally Defined Functions}

\section*{(demo)}
- Functions defined within other function bodies are bound to names in a local frame


Higher-Order Functions

\section*{Higher-Order Functions}

Functions are first-class: Functions can be manipulated as values in our programming language

\section*{Higher-Order Functions}

Functions are first-class: Functions can be manipulated as values in our programming language

Higher-order function:

\section*{Higher-Order Functions}

Functions are first-class: Functions can be manipulated as values in our programming language

Higher-order function:
1. A function that takes a function as an argument value or

\section*{Higher-Order Functions}

Functions are first-class: Functions can be manipulated as values in our programming language

\section*{Higher-order function:}
1. A function that takes a function as an argument value or
2. A function that returns a function as a return value

\section*{Higher-Order Functions}

Functions are first-class: Functions can be manipulated as values in our programming language

Higher-order function:
1. A function that takes a function as an argument value or
2. A function that returns a function as a return value

Higher-order functions:

\section*{Higher-Order Functions}

Functions are first-class: Functions can be manipulated as values in our programming language

Higher-order function:
1. A function that takes a function as an argument value or
2. A function that returns a function as a return value

Higher-order functions:
- Express general methods of computation

\section*{Higher-Order Functions}

Functions are first-class: Functions can be manipulated as values in our programming language

Higher-order function:
1. A function that takes a function as an argument value or
2. A function that returns a function as a return value

Higher-order functions:
- Express general methods of computation
- Remove repetition from programs

\section*{Higher-Order Functions}

Functions are first-class: Functions can be manipulated as values in our programming language

Higher-order function:
1. A function that takes a function as an argument value or
2. A function that returns a function as a return value

Higher-order functions:
- Express general methods of computation
- Remove repetition from programs
- Separate concerns among functions

Break!

Environments (Round 2)

Nested Definitions

\section*{Nested Definitions}
(demo)

\section*{Nested Definitions}

\section*{(demo)}
```

def make_adder(n):
def adder(k):
return k + n
return adder
add_three = make_adder(3)
add_three(4)

```


\section*{Nested Definitions}

\section*{(demo)}


\section*{Nested Definitions}

\section*{(demo)}

- Every user-defined function has a parent frame

f2: adder [parent=f1]
\begin{tabular}{r|r}
\(\mathbf{k}\) & \(\mathbf{4}\) \\
\hline \begin{tabular}{r|r} 
Return \\
value
\end{tabular} & 7
\end{tabular}

\section*{Nested Definitions}

\section*{(demo)}

- Every user-defined function has a parent frame
- The parent of a function is the frame in which it was defined

f2: adder [parent=f1]
k 4
Return
value 7

\section*{Nested Definitions}

\section*{(demo)}

- Every user-defined function has a parent frame
- The parent of a function is the frame in which it was defined
- Every local frame has a parent frame

f2: adder [parent=f1]
k 4
Return
value

\section*{Nested Definitions}

\section*{(demo)}

- Every user-defined function has a parent frame
- The parent of a function is the frame in which it was defined
- Every local frame has a parent frame
- The parent of a frame is the parent of the function called

f2: adder [parent=f1]
k 4
Return 7
value

\section*{Environment Diagram Rules (version 2)}

\section*{Environment Diagram Rules (version 2)}

Rules for def Statements:
1. Create a function with signature <name>(<parameters>) and parent [parent=<label>] (parent is the current frame)
f1: make_adder func adder(k) [parent=f1]
2. Set the body of that function to be everything indented after the first line
3. Bind <name> to that function in the current frame

\section*{Environment Diagram Rules (version 2)}

Rules for def Statements:
1. Create a function with signature <name>(<parameters>) and parent [parent=<label>] (parent is the current frame)
f1: make_adder func adder(k) [parent=f1]
2. Set the body of that function to be everything indented after the first line
3. Bind <name> to that function in the current frame

Rules for calling user-defined functions:
1. Create a new environment frame
2. Copy the parent of the function to the local frame: [parent=<label>]
3. Bind the function's parameters to its arguments in that frame
4. Execute the body of the function in the new environment

Function Composition

\section*{Environment Diagram}
```

def square(x):
return x * x
def make_adder(n):
def adder(k):
return k + n
return adder
def compose1(f,g):
def h(x):
return f(g(x))
return h
compose1(square, make_adder(2))(3)

```


\section*{Environment Diagram}
```

def square(x):
return x * x
def make_adder(n):
def adder(k):
return k + n
return adder
def compose1(f,g):
def h(x):
return f(g(x))
return h
compose1(square,Imake_adder (2),)(3)

```


\section*{Environment Diagram}
```

def square(x):
return x * x
def make_adder(n):
def adder(k):
return k + n
return adder
def compose1(f,g):
def h(x):
return f(g(x))
return h
compose1(square,Imake_adder(2),)(3)

```


\section*{Environment Diagram}
```

def square(x):
return x * x
def make_adder(n):
def adder(k):
return k + n
return adder
def compose1(f, g):
def h(x):
return f(g(x))
return h

```

```

compose1(square,Imake_adder (2), (3)

```



\section*{Environment Diagram}


\section*{Application: Currying}

\section*{Application: Currying}
- add is a two-argument function that returns the sum of the two arguments

\section*{Application: Currying}
- add is a two-argument function that returns the sum of the two arguments
- make_adder is a one-argument function that returns a oneargument function that returns the sum of the two arguments

\section*{Application: Currying}
- add is a two-argument function that returns the sum of the two arguments
- make_adder is a one-argument function that returns a oneargument function that returns the sum of the two arguments
- Currying allows us to represent functions with multiple variables as chains of functions with single variables

\section*{Application: Currying}
- add is a two-argument function that returns the sum of the two arguments
- make_adder is a one-argument function that returns a oneargument function that returns the sum of the two arguments
- Currying allows us to represent functions with multiple variables as chains of functions with single variables
(lambda \(\mathrm{x}, \mathrm{y}: \mathrm{x}\) * \(\mathrm{y}+1)(3,4)\)

\section*{Application: Currying}
- add is a two-argument function that returns the sum of the two arguments
- make_adder is a one-argument function that returns a oneargument function that returns the sum of the two arguments
- Currying allows us to represent functions with multiple variables as chains of functions with single variables
\[
\begin{gathered}
\text { (lambda } \mathrm{x}, \mathrm{y}: \mathrm{x} * \mathrm{y}+1)(3,4) \\
(\operatorname{lambda} \mathrm{x}: \operatorname{lambda} \mathrm{y}: \mathrm{x} * \mathrm{y}+1)(3)(4)
\end{gathered}
\]

\section*{Application: Currying}
- add is a two-argument function that returns the sum of the two arguments
- make_adder is a one-argument function that returns a oneargument function that returns the sum of the two arguments
- Currying allows us to represent functions with multiple variables as chains of functions with single variables
- It is named after mathematician and logician Haskell Curry (who rediscovered it after Moses Schönfinkel)
\[
\begin{gathered}
\text { (lambda } \mathrm{x}, \mathrm{y}: \mathrm{x} * \mathrm{y}+1)(3,4) \\
(\operatorname{lambda} \mathrm{x}: \operatorname{lambda} \mathrm{y}: \mathrm{x} * \mathrm{y}+1)(3)(4)
\end{gathered}
\]

\section*{Application: Currying}
- add is a two-argument function that returns the sum of the two arguments
- make_adder is a one-argument function that returns a oneargument function that returns the sum of the two arguments
- Currying allows us to represent functions with multiple variables as chains of functions with single variables
- It is named after mathematician and logician Haskell Brooks Curry (who rediscovered it after Moses Schönfinkel)
\[
\begin{gathered}
\text { (lambda } \mathrm{x}, \mathrm{y}: \mathrm{x} * \mathrm{y}+1)(3,4) \\
(\operatorname{lambda} \mathrm{x}: \operatorname{lambda} \mathrm{y}: \mathrm{x} * \mathrm{y}+1)(3)(4)
\end{gathered}
\]```

