
Brian Hou
June 27, 2016

Lecture 5: Higher-Order Functions

Announcements

Announcements

• Homework 2 is due Wednesday 6/29

Announcements

• Homework 2 is due Wednesday 6/29
• Project 1 is due Thursday 6/30

Announcements

• Homework 2 is due Wednesday 6/29
• Project 1 is due Thursday 6/30

• Earn 1 EC point for completing it by Wednesday 6/29

Announcements

• Homework 2 is due Wednesday 6/29
• Project 1 is due Thursday 6/30

• Earn 1 EC point for completing it by Wednesday 6/29
• Quiz 2 is on Thursday 6/30 at the beginning of lecture

Announcements

• Homework 2 is due Wednesday 6/29
• Project 1 is due Thursday 6/30

• Earn 1 EC point for completing it by Wednesday 6/29
• Quiz 2 is on Thursday 6/30 at the beginning of lecture

• Environment Diagrams and Higher-Order Functions

Announcements

• Homework 2 is due Wednesday 6/29
• Project 1 is due Thursday 6/30

• Earn 1 EC point for completing it by Wednesday 6/29
• Quiz 2 is on Thursday 6/30 at the beginning of lecture

• Environment Diagrams and Higher-Order Functions
• Group Tutoring is available! See Piazza for details

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Functions), the goals are:
• To understand the idea of

functional abstraction
• To study this idea through:

• higher-order functions
• recursion
• orders of growth

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Higher-Order Functions

Generalizing Computations

Generalizing Computations

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Computations

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Computations

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Computations

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Computations (demo)

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Computations

def sum_naturals(n):

 total, k = 0, 1

 while k <= n:

 total, k = total + k, k + 1

 return total

def sum_cubes(n):

 total, k = 0, 1

 while k <= n:

 total, k = total + pow(k, 3), k + 1

 return total

Generalizing Computations

def sum_naturals(n):

 total, k = 0, 1

 while k <= n:

 total, k = total + k, k + 1

 return total

def sum_cubes(n):

 total, k = 0, 1

 while k <= n:

 total, k = total + pow(k, 3), k + 1

 return total

Generalizing Computations

def sum_naturals(n):

 total, k = 0, 1

 while k <= n:

 total, k = total + k, k + 1

 return total

def sum_cubes(n):

 total, k = 0, 1

 while k <= n:

 total, k = total + pow(k, 3), k + 1

 return total

Generalizing Computations

def sum_naturals(n):

 total, k = 0, 1

 while k <= n:

 total, k = total + k, k + 1

 return total

(demo)

def sum_cubes(n):

 total, k = 0, 1

 while k <= n:

 total, k = total + pow(k, 3), k + 1

 return total

Summation Example

cube = lambda k: pow(k, 3)

def summation(n, term):

 """Sum the first N terms of a sequence.

 >>> summation(5, cube)

 225

 """

 total, k = 0, 1

 while k <= n:

 total, k = total + term(k), k + 1

 return total

Summation Example

cube = lambda k: pow(k, 3)

def summation(n, term):

 """Sum the first N terms of a sequence.

 >>> summation(5, cube)

 225

 """

 total, k = 0, 1

 while k <= n:

 total, k = total + term(k), k + 1

 return total

Function of a single
argument (not called "term")

Summation Example

cube = lambda k: pow(k, 3)

def summation(n, term):

 """Sum the first N terms of a sequence.

 >>> summation(5, cube)

 225

 """

 total, k = 0, 1

 while k <= n:

 total, k = total + term(k), k + 1

 return total

Function of a single
argument (not called "term")

A parameter that will be
bound to a function

Summation Example

cube = lambda k: pow(k, 3)

def summation(n, term):

 """Sum the first N terms of a sequence.

 >>> summation(5, cube)

 225

 """

 total, k = 0, 1

 while k <= n:

 total, k = total + term(k), k + 1

 return total

Function of a single
argument (not called "term")

A parameter that will be
bound to a function

The function bound to
term gets called here

Summation Example

cube = lambda k: pow(k, 3)

def summation(n, term):

 """Sum the first N terms of a sequence.

 >>> summation(5, cube)

 225

 """

 total, k = 0, 1

 while k <= n:

 total, k = total + term(k), k + 1

 return total

Function of a single
argument (not called "term")

A parameter that will be
bound to a function

The cube function is passed
as an argument value

The function bound to
term gets called here

Locally Defined Functions

Locally Defined Functions (demo)

Locally Defined Functions

• Functions defined within other function bodies are bound
to names in a local frame

(demo)

def make_adder(n):

 """Return a function that takes one argument K

 and returns K + N.

 >>> add_three = make_adder(3)

 >>> add_three(4)

 7

 """

 def adder(k):

 return k + n

 return adder

Locally Defined Functions

• Functions defined within other function bodies are bound
to names in a local frame

(demo)

def make_adder(n):

 """Return a function that takes one argument K

 and returns K + N.

 >>> add_three = make_adder(3)

 >>> add_three(4)

 7

 """

 def adder(k):

 return k + n

 return adder

Locally Defined Functions

• Functions defined within other function bodies are bound
to names in a local frame

(demo)

A function that
returns a function

def make_adder(n):

 """Return a function that takes one argument K

 and returns K + N.

 >>> add_three = make_adder(3)

 >>> add_three(4)

 7

 """

 def adder(k):

 return k + n

 return adder

Locally Defined Functions

• Functions defined within other function bodies are bound
to names in a local frame

(demo)

A function that
returns a function

The name add_three is
bound to a function

def make_adder(n):

 """Return a function that takes one argument K

 and returns K + N.

 >>> add_three = make_adder(3)

 >>> add_three(4)

 7

 """

 def adder(k):

 return k + n

 return adder

Locally Defined Functions

• Functions defined within other function bodies are bound
to names in a local frame

(demo)

A function that
returns a function

The name add_three is
bound to a function

A def statement within
another def statement

def make_adder(n):

 """Return a function that takes one argument K

 and returns K + N.

 >>> add_three = make_adder(3)

 >>> add_three(4)

 7

 """

 def adder(k):

 return k + n

 return adder

Locally Defined Functions

• Functions defined within other function bodies are bound
to names in a local frame

(demo)

A function that
returns a function

The name add_three is
bound to a function

A def statement within
another def statement

Can refer to names in
the enclosing function

def make_adder(n):

 """Return a function that takes one argument K

 and returns K + N.

 >>> add_three = make_adder(3)

 >>> add_three(4)

 7

 """

 def adder(k):

 return k + n

 return adder

Locally Defined Functions

• Functions defined within other function bodies are bound
to names in a local frame

(demo)

A function that
returns a function

The name add_three is
bound to a function

A def statement within
another def statement

Can refer to names in
the enclosing function

Higher-Order Functions

Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values in our programming language

Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values in our programming language

Higher-order function:

Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values in our programming language

Higher-order function:

1. A function that takes a function as an argument value or

Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values in our programming language

Higher-order function:

1. A function that takes a function as an argument value or

2. A function that returns a function as a return value

Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values in our programming language

Higher-order function:

1. A function that takes a function as an argument value or

2. A function that returns a function as a return value

Higher-order functions:

Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values in our programming language

Higher-order function:

1. A function that takes a function as an argument value or

2. A function that returns a function as a return value

Higher-order functions:
• Express general methods of computation

Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values in our programming language

Higher-order function:

1. A function that takes a function as an argument value or

2. A function that returns a function as a return value

Higher-order functions:
• Express general methods of computation
• Remove repetition from programs

Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values in our programming language

Higher-order function:

1. A function that takes a function as an argument value or

2. A function that returns a function as a return value

Higher-order functions:
• Express general methods of computation
• Remove repetition from programs
• Separate concerns among functions

Break!

Environments (Round 2)

Nested Definitions

Nested Definitions (demo)

Nested Definitions (demo)

Nested Definitions (demo)

Nested def

Nested Definitions (demo)

Nested def

• Every user-defined function
has a parent frame

Nested Definitions (demo)

Nested def

• Every user-defined function
has a parent frame

• The parent of a function is
the frame in which it was
defined

Nested Definitions (demo)

Nested def

• Every user-defined function
has a parent frame

• The parent of a function is
the frame in which it was
defined

• Every local frame has a
parent frame

Nested Definitions (demo)

Nested def

• Every user-defined function
has a parent frame

• The parent of a function is
the frame in which it was
defined

• Every local frame has a
parent frame

• The parent of a frame is the
parent of the function called

Environment Diagram Rules (version 2)

Environment Diagram Rules (version 2)

Rules for def Statements:

1. Create a function with signature <name>(<parameters>) and
parent [parent=<label>] (parent is the current frame)

2. Set the body of that function to be everything indented after
the first line

3. Bind <name> to that function in the current frame

Environment Diagram Rules (version 2)

Rules for def Statements:

1. Create a function with signature <name>(<parameters>) and
parent [parent=<label>] (parent is the current frame)

2. Set the body of that function to be everything indented after
the first line

3. Bind <name> to that function in the current frame

Rules for calling user-defined functions:

1. Create a new environment frame

2. Copy the parent of the function to the local frame:
[parent=<label>]

3. Bind the function's parameters to its arguments in that frame

4. Execute the body of the function in the new environment

Function Composition

Environment Diagram

Environment Diagram

Environment Diagram

Environment Diagram

Environment Diagram

Return
value of

make_adder
is an

argument to
compose1

Environment Diagram

Return
value of

make_adder
is an

argument to
compose1

Environment Diagram

Return
value of

make_adder
is an

argument to
compose1

Environment Diagram

Return
value of

make_adder
is an

argument to
compose1

Environment Diagram

2

1

3

Return
value of

make_adder
is an

argument to
compose1

Environment Diagram

2

1

3

Return
value of

make_adder
is an

argument to
compose1

Environment Diagram

2

1

3

1

2

3

Return
value of

make_adder
is an

argument to
compose1

Application: Currying

Application: Currying

• add is a two-argument function that returns the sum of the
two arguments

Application: Currying

• add is a two-argument function that returns the sum of the
two arguments

• make_adder is a one-argument function that returns a one-
argument function that returns the sum of the two
arguments

Application: Currying

• add is a two-argument function that returns the sum of the
two arguments

• make_adder is a one-argument function that returns a one-
argument function that returns the sum of the two
arguments

• Currying allows us to represent functions with multiple
variables as chains of functions with single variables

Application: Currying

• add is a two-argument function that returns the sum of the
two arguments

• make_adder is a one-argument function that returns a one-
argument function that returns the sum of the two
arguments

• Currying allows us to represent functions with multiple
variables as chains of functions with single variables

(lambda x, y: x * y + 1)(3, 4)

Application: Currying

• add is a two-argument function that returns the sum of the
two arguments

• make_adder is a one-argument function that returns a one-
argument function that returns the sum of the two
arguments

• Currying allows us to represent functions with multiple
variables as chains of functions with single variables

(lambda x, y: x * y + 1)(3, 4)

(lambda x: lambda y: x * y + 1)(3)(4)

Application: Currying

• add is a two-argument function that returns the sum of the
two arguments

• make_adder is a one-argument function that returns a one-
argument function that returns the sum of the two
arguments

• Currying allows us to represent functions with multiple
variables as chains of functions with single variables

• It is named after mathematician and logician Haskell Curry
(who rediscovered it after Moses Schönfinkel)

(lambda x, y: x * y + 1)(3, 4)

(lambda x: lambda y: x * y + 1)(3)(4)

Application: Currying

• add is a two-argument function that returns the sum of the
two arguments

• make_adder is a one-argument function that returns a one-
argument function that returns the sum of the two
arguments

• Currying allows us to represent functions with multiple
variables as chains of functions with single variables

• It is named after mathematician and logician Haskell Curry
(who rediscovered it after Moses Schönfinkel)

(lambda x, y: x * y + 1)(3, 4)

(lambda x: lambda y: x * y + 1)(3)(4)

• It is named after mathematician and logician Haskell
Brooks Curry (who rediscovered it after Moses Schönfinkel)

