
Marvin Zhang
06/28/2016

Lecture 6: Recursion

Announcements

• Hog is due Thursday! Submit Wednesday for 1 EC point
• Be sure to run --submit to check against hidden tests

• HW2 is due Wednesday! Submit Wednesday for credit
• Tutors have begun small tutoring sessions!

• Check Piazza for details

• Starting this week, lab assistants are running checkoffs
in lab sections!
• Talk to a lab assistant for a few minutes about your

lab or homework assignment
• http://cs61a.org/articles/about.html#checkoffs

• Quiz 2 is this Thursday
• Alternate Exam Request: goo.gl/forms/FDQix4I5dNXPQDgw2

Roadmap

• This week (Functions), the goals are:

• To understand the idea of
functional abstraction

• To study this idea through:
• higher-order functions
• recursion (today and tomorrow!)
• orders of growth

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Recursion

• A function is recursive if the body of that function
contains a call to itself
• This implies that executing the body of a recursive

function may require applying that function

• How is this possible? We’ll see some examples next.

Recursion

• Why would we want to do this?
• A common problem solving technique is to break down the

problem into smaller problems that are easier to solve
• This is exactly what recursion does!

• For example, how would you write a function that, given
a string, returns the reversed version of the string?

(demo) Anatomy of a Recursive Function

• The def statement header is similar to other functions

• Conditional statements check for base cases

• Base cases are evaluated without recursive calls

• Recursive cases are evaluated with recursive calls

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

The easy way, and the right way

Verifying Correctness

Recursion in Environment Diagrams (demo)

• The same function fact is called
multiple times

• Different frames keep track of the
different arguments in each call

• What n evaluates to depends upon  
the current environment

• Each call to fact solves a simpler
problem than the last: smaller n

Better: the Recursive Leap of Faith

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

Is factorial implemented correctly?

1. Verify the base case(s).

1. Are they correct?

2. Are they exhaustive?

Now, harness the power of
functional abstraction!

2. Assume that factorial(n-1)
is correct.

3. Verify that factorial(n)
is correct.

Writing Recursion (demo)

def sum_digits(n):
 """Return the sum of the digits of n.

 >>> sum_digits(2016)
 9
 """

if n == 1:
 return 1

if n < 0:
 return 0

if n < 10:
 return n

if n < 100:
 return n

Writing Recursion (demo)

def sum_digits(n):
 """Return the sum of the digits of n.

 >>> sum_digits(2016)
 9
 """
 if n < 10:
 return n
 else:
 return sum_digits(n//10) + n%10

Iteration vs Recursion

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using iteration: Using recursion:

n, total, k, fact_iter

Math:

Names: n, fact

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

(demo)

Recursion on Sequences

• We’ve seen iteration as one way of working with
sequences, but iteration is a special case of recursion

• This means that we can also use recursion to solve
problems involving sequences!

(demo)

def reverse(word):
 """Return the reverse of the string word."""
 if len(word) < 2:
 return word
 else:
 return reverse(word[1:]) + word[0]

Summary

• Recursive functions call themselves, either directly or
indirectly, in the function body
• The motivation for this is to break down the problem

into smaller, easier to solve problems
• For example, computing the factorial of a smaller

number, or the reverse of a shorter string

• Recursive functions have base cases, which are not
recursive, and recursive cases
• The best way to verify recursive functions is with

functional abstraction!
• Use the leap of faith

