
Marvin Zhang
06/28/2016

Lecture 6: Recursion

Announcements

Announcements

• Hog is due Thursday! Submit Wednesday for 1 EC point

http://cs61a.org/articles/about.html#checkoffs
http://goo.gl/forms/FDQix4I5dNXPQDgw2

Announcements

• Hog is due Thursday! Submit Wednesday for 1 EC point

• Be sure to run --submit to check against hidden tests

http://cs61a.org/articles/about.html#checkoffs
http://goo.gl/forms/FDQix4I5dNXPQDgw2

Announcements

• Hog is due Thursday! Submit Wednesday for 1 EC point

• Be sure to run --submit to check against hidden tests
• HW2 is due Wednesday! Submit Wednesday for credit

http://cs61a.org/articles/about.html#checkoffs
http://goo.gl/forms/FDQix4I5dNXPQDgw2

Announcements

• Hog is due Thursday! Submit Wednesday for 1 EC point

• Be sure to run --submit to check against hidden tests
• HW2 is due Wednesday! Submit Wednesday for credit
• Tutors have begun small tutoring sessions!

http://cs61a.org/articles/about.html#checkoffs
http://goo.gl/forms/FDQix4I5dNXPQDgw2

Announcements

• Hog is due Thursday! Submit Wednesday for 1 EC point

• Be sure to run --submit to check against hidden tests
• HW2 is due Wednesday! Submit Wednesday for credit
• Tutors have begun small tutoring sessions!

• Check Piazza for details

http://cs61a.org/articles/about.html#checkoffs
http://goo.gl/forms/FDQix4I5dNXPQDgw2

Announcements

• Hog is due Thursday! Submit Wednesday for 1 EC point

• Be sure to run --submit to check against hidden tests
• HW2 is due Wednesday! Submit Wednesday for credit
• Tutors have begun small tutoring sessions!

• Check Piazza for details
• Starting this week, lab assistants are running checkoffs

in lab sections!

http://cs61a.org/articles/about.html#checkoffs
http://goo.gl/forms/FDQix4I5dNXPQDgw2

Announcements

• Hog is due Thursday! Submit Wednesday for 1 EC point

• Be sure to run --submit to check against hidden tests
• HW2 is due Wednesday! Submit Wednesday for credit
• Tutors have begun small tutoring sessions!

• Check Piazza for details
• Starting this week, lab assistants are running checkoffs

in lab sections!
• Talk to a lab assistant for a few minutes about your

lab or homework assignment

http://cs61a.org/articles/about.html#checkoffs
http://goo.gl/forms/FDQix4I5dNXPQDgw2

Announcements

• Hog is due Thursday! Submit Wednesday for 1 EC point

• Be sure to run --submit to check against hidden tests
• HW2 is due Wednesday! Submit Wednesday for credit
• Tutors have begun small tutoring sessions!

• Check Piazza for details
• Starting this week, lab assistants are running checkoffs

in lab sections!
• Talk to a lab assistant for a few minutes about your

lab or homework assignment
• http://cs61a.org/articles/about.html#checkoffs

http://cs61a.org/articles/about.html#checkoffs
http://goo.gl/forms/FDQix4I5dNXPQDgw2

Announcements

• Hog is due Thursday! Submit Wednesday for 1 EC point

• Be sure to run --submit to check against hidden tests
• HW2 is due Wednesday! Submit Wednesday for credit
• Tutors have begun small tutoring sessions!

• Check Piazza for details
• Starting this week, lab assistants are running checkoffs

in lab sections!
• Talk to a lab assistant for a few minutes about your

lab or homework assignment
• http://cs61a.org/articles/about.html#checkoffs

• Quiz 2 is this Thursday

http://cs61a.org/articles/about.html#checkoffs
http://goo.gl/forms/FDQix4I5dNXPQDgw2

Announcements

• Hog is due Thursday! Submit Wednesday for 1 EC point

• Be sure to run --submit to check against hidden tests
• HW2 is due Wednesday! Submit Wednesday for credit
• Tutors have begun small tutoring sessions!

• Check Piazza for details
• Starting this week, lab assistants are running checkoffs

in lab sections!
• Talk to a lab assistant for a few minutes about your

lab or homework assignment
• http://cs61a.org/articles/about.html#checkoffs

• Quiz 2 is this Thursday
• Alternate Exam Request: goo.gl/forms/FDQix4I5dNXPQDgw2

http://cs61a.org/articles/about.html#checkoffs
http://goo.gl/forms/FDQix4I5dNXPQDgw2

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Functions), the goals are:

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Functions), the goals are:
• To understand the idea of

functional abstraction

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Functions), the goals are:
• To understand the idea of

functional abstraction

• To study this idea through:

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Functions), the goals are:
• To understand the idea of

functional abstraction

• To study this idea through:
• higher-order functions

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Functions), the goals are:
• To understand the idea of

functional abstraction

• To study this idea through:
• higher-order functions
• recursion (today and tomorrow!)

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Functions), the goals are:
• To understand the idea of

functional abstraction

• To study this idea through:
• higher-order functions
• recursion (today and tomorrow!)
• orders of growth

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Recursion

Recursion

• A function is recursive if the body of that function
contains a call to itself

Recursion

• A function is recursive if the body of that function
contains a call to itself
• This implies that executing the body of a recursive

function may require applying that function

Recursion

• A function is recursive if the body of that function
contains a call to itself
• This implies that executing the body of a recursive

function may require applying that function

• How is this possible? We’ll see some examples next.

Recursion

Recursion

• Why would we want to do this?

Recursion

• Why would we want to do this?
• A common problem solving technique is to break down the

problem into smaller problems that are easier to solve

Recursion

• Why would we want to do this?
• A common problem solving technique is to break down the

problem into smaller problems that are easier to solve
• This is exactly what recursion does!

Recursion

• Why would we want to do this?
• A common problem solving technique is to break down the

problem into smaller problems that are easier to solve
• This is exactly what recursion does!

Recursion

• Why would we want to do this?
• A common problem solving technique is to break down the

problem into smaller problems that are easier to solve
• This is exactly what recursion does!
• For example, how would you write a function that, given

a string, returns the reversed version of the string?

Recursion

• Why would we want to do this?
• A common problem solving technique is to break down the

problem into smaller problems that are easier to solve
• This is exactly what recursion does!
• For example, how would you write a function that, given

a string, returns the reversed version of the string?

(demo)

Anatomy of a Recursive Function

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

Anatomy of a Recursive Function

• The def statement header is similar to other functions

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

Anatomy of a Recursive Function

• The def statement header is similar to other functions

• Conditional statements check for base cases

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

Anatomy of a Recursive Function

• The def statement header is similar to other functions

• Conditional statements check for base cases

• Base cases are evaluated without recursive calls

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

Anatomy of a Recursive Function

• The def statement header is similar to other functions

• Conditional statements check for base cases

• Base cases are evaluated without recursive calls

• Recursive cases are evaluated with recursive calls

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

The easy way, and the right way

Verifying Correctness

Recursion in Environment Diagrams

Recursion in Environment Diagrams (demo)

Recursion in Environment Diagrams (demo)

Recursion in Environment Diagrams (demo)

Recursion in Environment Diagrams (demo)

• The same function fact is called
multiple times

Recursion in Environment Diagrams (demo)

• The same function fact is called
multiple times

Recursion in Environment Diagrams (demo)

• The same function fact is called
multiple times

• Different frames keep track of the
different arguments in each call

Recursion in Environment Diagrams (demo)

• The same function fact is called
multiple times

• Different frames keep track of the
different arguments in each call

• What n evaluates to depends upon  
the current environment

Recursion in Environment Diagrams (demo)

• The same function fact is called
multiple times

• Different frames keep track of the
different arguments in each call

• What n evaluates to depends upon  
the current environment

Recursion in Environment Diagrams (demo)

• The same function fact is called
multiple times

• Different frames keep track of the
different arguments in each call

• What n evaluates to depends upon  
the current environment

• Each call to fact solves a simpler
problem than the last: smaller n

Better: the Recursive Leap of Faith

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

Better: the Recursive Leap of Faith

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

Is factorial implemented correctly?

Better: the Recursive Leap of Faith

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

Is factorial implemented correctly?

1. Verify the base case(s).

Better: the Recursive Leap of Faith

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

Is factorial implemented correctly?

1. Verify the base case(s).

1. Are they correct?

Better: the Recursive Leap of Faith

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

Is factorial implemented correctly?

1. Verify the base case(s).

1. Are they correct?

2. Are they exhaustive?

Better: the Recursive Leap of Faith

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

Is factorial implemented correctly?

1. Verify the base case(s).

1. Are they correct?

2. Are they exhaustive?

Now, harness the power of
functional abstraction!

Better: the Recursive Leap of Faith

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

Is factorial implemented correctly?

1. Verify the base case(s).

1. Are they correct?

2. Are they exhaustive?

Now, harness the power of
functional abstraction!

2. Assume that factorial(n-1)
is correct.

Better: the Recursive Leap of Faith

def factorial(n):
 """Return the factorial of n."""
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

Is factorial implemented correctly?

1. Verify the base case(s).

1. Are they correct?

2. Are they exhaustive?

Now, harness the power of
functional abstraction!

2. Assume that factorial(n-1)
is correct.

3. Verify that factorial(n)
is correct.

Writing Recursion

Writing Recursion

def sum_digits(n):
 """Return the sum of the digits of n.

 >>> sum_digits(2016)
 9
 """

Writing Recursion

def sum_digits(n):
 """Return the sum of the digits of n.

 >>> sum_digits(2016)
 9
 """

if n == 1:
 return 1

if n < 0:
 return 0

if n < 10:
 return n

if n < 100:
 return n

Writing Recursion

def sum_digits(n):
 """Return the sum of the digits of n.

 >>> sum_digits(2016)
 9
 """

if n == 1:
 return 1

if n < 0:
 return 0

if n < 10:
 return n

if n < 100:
 return n

Writing Recursion

def sum_digits(n):
 """Return the sum of the digits of n.

 >>> sum_digits(2016)
 9
 """

if n == 1:
 return 1

if n < 0:
 return 0

if n < 10:
 return n

if n < 100:
 return n

Writing Recursion

def sum_digits(n):
 """Return the sum of the digits of n.

 >>> sum_digits(2016)
 9
 """

if n == 1:
 return 1

if n < 0:
 return 0

if n < 10:
 return n

if n < 100:
 return n

Writing Recursion

def sum_digits(n):
 """Return the sum of the digits of n.

 >>> sum_digits(2016)
 9
 """

if n == 1:
 return 1

if n < 0:
 return 0

if n < 10:
 return n

if n < 100:
 return n

Writing Recursion

def sum_digits(n):
 """Return the sum of the digits of n.

 >>> sum_digits(2016)
 9
 """

if n < 10:
 return n

Writing Recursion (demo)

def sum_digits(n):
 """Return the sum of the digits of n.

 >>> sum_digits(2016)
 9
 """

if n < 10:
 return n

Writing Recursion (demo)

def sum_digits(n):
 """Return the sum of the digits of n.

 >>> sum_digits(2016)
 9
 """

Writing Recursion (demo)

def sum_digits(n):
 """Return the sum of the digits of n.

 >>> sum_digits(2016)
 9
 """
 if n < 10:
 return n
 else:
 return sum_digits(n//10) + n%10

Iteration vs Recursion

Iteration vs Recursion

• Iteration is a special case of recursion

Iteration vs Recursion

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

Iteration vs Recursion

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

(demo)

Iteration vs Recursion

Using iteration:

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

(demo)

Iteration vs Recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

Using iteration:

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

(demo)

Iteration vs Recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

Using iteration: Using recursion:

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

(demo)

Iteration vs Recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using iteration: Using recursion:

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

(demo)

Iteration vs Recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using iteration: Using recursion:

Math:

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

(demo)

Iteration vs Recursion

n! =
nY

k=1

k

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using iteration: Using recursion:

Math:

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

(demo)

Iteration vs Recursion

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using iteration: Using recursion:

Math:

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

(demo)

Iteration vs Recursion

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using iteration: Using recursion:

Math:

Names:

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

(demo)

Iteration vs Recursion

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using iteration: Using recursion:

n, total, k, fact_iter

Math:

Names:

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

(demo)

Iteration vs Recursion

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using iteration: Using recursion:

n, total, k, fact_iter

Math:

Names: n, fact

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but
converting recursion to iteration can be more tricky

(demo)

Recursion on Sequences

Recursion on Sequences

• We’ve seen iteration as one way of working with
sequences, but iteration is a special case of recursion

Recursion on Sequences

• We’ve seen iteration as one way of working with
sequences, but iteration is a special case of recursion

• This means that we can also use recursion to solve
problems involving sequences!

Recursion on Sequences

• We’ve seen iteration as one way of working with
sequences, but iteration is a special case of recursion

• This means that we can also use recursion to solve
problems involving sequences!

(demo)

Recursion on Sequences

• We’ve seen iteration as one way of working with
sequences, but iteration is a special case of recursion

• This means that we can also use recursion to solve
problems involving sequences!

(demo)

def reverse(word):
 """Return the reverse of the string word."""
 if len(word) < 2:
 return word
 else:
 return reverse(word[1:]) + word[0]

Summary

Summary

• Recursive functions call themselves, either directly or
indirectly, in the function body

Summary

• Recursive functions call themselves, either directly or
indirectly, in the function body
• The motivation for this is to break down the problem

into smaller, easier to solve problems

Summary

• Recursive functions call themselves, either directly or
indirectly, in the function body
• The motivation for this is to break down the problem

into smaller, easier to solve problems

• For example, computing the factorial of a smaller
number, or the reverse of a shorter string

Summary

• Recursive functions call themselves, either directly or
indirectly, in the function body
• The motivation for this is to break down the problem

into smaller, easier to solve problems

• For example, computing the factorial of a smaller
number, or the reverse of a shorter string

• Recursive functions have base cases, which are not
recursive, and recursive cases

Summary

• Recursive functions call themselves, either directly or
indirectly, in the function body
• The motivation for this is to break down the problem

into smaller, easier to solve problems

• For example, computing the factorial of a smaller
number, or the reverse of a shorter string

• Recursive functions have base cases, which are not
recursive, and recursive cases
• The best way to verify recursive functions is with

functional abstraction!

Summary

• Recursive functions call themselves, either directly or
indirectly, in the function body
• The motivation for this is to break down the problem

into smaller, easier to solve problems

• For example, computing the factorial of a smaller
number, or the reverse of a shorter string

• Recursive functions have base cases, which are not
recursive, and recursive cases
• The best way to verify recursive functions is with

functional abstraction!
• Use the leap of faith

