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Roadmap

• This week (Functions), the goals are:
• To understand the idea of 

functional abstraction

• To study this idea through:
• higher-order functions
• recursion (today and tomorrow!)
• orders of growth

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications
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• Why would we want to do this?
• A common problem solving technique is to break down the 

problem into smaller problems that are easier to solve
• This is exactly what recursion does!
• For example, how would you write a function that, given 

a string, returns the reversed version of the string?
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Anatomy of a Recursive Function

• The def statement header is similar to other functions

• Conditional statements check for base cases

• Base cases are evaluated without recursive calls

• Recursive cases are evaluated with recursive calls

def factorial(n):
    """Return the factorial of n."""
    if n == 0:
        return 1
    else:
        return n * factorial(n-1)



The easy way, and the right way

Verifying Correctness
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Recursion in Environment Diagrams (demo)

• The same function fact is called 
multiple times

• Different frames keep track of the 
different arguments in each call

• What n evaluates to depends upon  
the current environment

• Each call to fact solves a simpler 
problem than the last: smaller n
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Better: the Recursive Leap of Faith

def factorial(n):
    """Return the factorial of n."""
    if n == 0:
        return 1
    else:
        return n * factorial(n-1)

Is factorial implemented correctly?

1. Verify the base case(s).

1. Are they correct?

2. Are they exhaustive?

Now, harness the power of 
functional abstraction!

2. Assume that factorial(n-1) 
is correct.

3. Verify that factorial(n) 
is correct.
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Writing Recursion (demo)

def sum_digits(n):
    """Return the sum of the digits of n.

    >>> sum_digits(2016)
    9
    """
    if n < 10:
        return n
    else:
        return sum_digits(n//10) + n%10
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Iteration vs Recursion

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total*k, k+1
    return total

def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

Using iteration: Using recursion:

n, total, k, fact_iter

Math:

Names: n, fact

• Iteration is a special case of recursion
• Converting iteration to recursion is formulaic, but 
converting recursion to iteration can be more tricky

(demo)
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Recursion on Sequences

• We’ve seen iteration as one way of working with 
sequences, but iteration is a special case of recursion

• This means that we can also use recursion to solve 
problems involving sequences!

(demo)

def reverse(word):
    """Return the reverse of the string word."""
    if len(word) < 2:
        return word
    else:
        return reverse(word[1:]) + word[0]
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Summary

• Recursive functions call themselves, either directly or 
indirectly, in the function body
• The motivation for this is to break down the problem 

into smaller, easier to solve problems

• For example, computing the factorial of a smaller 
number, or the reverse of a shorter string

• Recursive functions have base cases, which are not 
recursive, and recursive cases
• The best way to verify recursive functions is with 

functional abstraction!
• Use the leap of faith


