Lecture 7: Tree Recursion

Brian Hou
June 29, 2016

Announcements

Project 1 is due tomorrow, +1 EC point if submitted today

Run ok --submit to check against hidden tests

Check your submission at ok.cs6la.org

Invite your partner (watch this video)
Homework 2 1s due today, Homework 1 solutions uploaded
Quiz 2 is tomorrow at the beginning of lecture

IT you have an alternate time or are not enrolled in
the class, please arrive at 11:45 am

Week 2 checkoff must be done in lab today or tomorrow
Talk about hw0l, 1ab02, lab03 with a lab assistant
Alternate Exam Request: goo.gl/forms/FDQix4I5dNXPQDgw?2

http://ok.cs61a.org
https://youtu.be/3qx_RfKbvuQ
http://goo.gl/forms/FDQix4I5dNXPQDgw2

Hog Contest Rules

Up to two people submit one entry;
max one entry per person

Your score 1s the number of entries
against which you win more than
50.00001% of the time

All strategies must be deterministic,
pure functions of the current player
and opponent scores

Top 3 entries will receive EC
The real prize: honor and glory
Also: bragging rights

Ready? cs6la.org/proj/hog_contest

http://cs61a.org/proj/hog_contest

Roadmap

Introduction
Functions This week (Functions), the goals are:

« To understand the idea of
Data functional abstraction
[Mutability] « To study this idea through:

higher-order functions
(Objects) - recursion
. orders of growth

(Interpretatlon)
(%aradigms]

(Applications)

Recursion

The Cascade Function

def cascade(n):
if n < 10:
print(n)
else:
print(n)
cascade(n//10)
- print(n)

cascade(123)

Output

Global frame

fl:

cascade

cascade [p=0G]

n 123

. cascade [p=0G]

n 12

Return

value None

: cascade [p=G]

n |1

Return

None
value

(demo)

func cascade(n) [p=G]

Each cascade frame
1s from a different
call to cascade.

Until the Return
value appears, that
call has not

comp leted.

Any statement can
appear before or
after the recursive
call.

Two Definitions of Cascade (demo)

def cascade(n): def cascade(n):
if n 10: print(n)
print(n) if n 10:
else: cascade(n 10)
print(n) print(n)
cascade(n 10)
print(n)

If two i1mplementations are equally clear, then
shorter 1s usually better

In this case, the longer 1implementation 1s more
clear (to me)

When learning to write recursive functions, put
base cases first

Inverse Cascade

Output
1 def inverse cascade(n): def f then g(f, g, n):
133 grow(n) if n:
1234 print(n) f(n)
153 shrink(n) g(n)
1
grow = lambda n: £ then g)

shrink = lambda n: f then g()

Fibonacci

The Fibonacci Sequence

n: o, 1, 2, 3, 4, 5, 6, 7, 8, can 35
fib(n): o, 1, 1, 2, 3, 5, 8, 13, 21, can 9,227,465

The Fibonacci Sequence

n: o, 1, 2, 3, 4, 5, 6, 7, 8,
fib(n): o, 1, 1, 2, 3, 5, 8, 13, 21,

def fib(n):

pred, curr = 0, 1
k =1

while k < n:

pred, curr = curr,:pred + curr |

24

ko= 1 " The next Fibonacci number
1s the sum of the two

return curr
_ previous Fibonacci numbers)

The Fibonacci Sequence

n: o, 1, 2, 3, 4, 5, 6, 7, 8,
fib(n): o, 1, 1, 2, 3, 5, 8, 13, 21,

def fib(n):

+1if n == 0: :
§ ceturn O | This correction was
e aen ; made on July 3 at 10PM

pred, curr = 0, 1

k =1

while k < n:

pred, curr = curr,: pred + curr .

24

........ A_..-..-..-.f
= f . . ™
ko= 1 The next Fibonacci number
return curr iS the sum Of the two
kprevious Fibonacci numbers)

The Fibonacci Sequence

n: o, 1, 2, 3, 4, 5, 6, 7, 8,
fib(n): o, 1, 1, 2, 3, 5, 8, 13, 21,

def fib(n):
if n == 0:
return 0O
elif n ==
return 1

else:

________ emre e
4 . . |
The next Fibonacci number

1s the sum of the two
\previous Fibonacci numbers)

Tree Recursion

Tree-shaped processes arise whenever executing the body of
a recursive function makes more than one recursive call

def fib(n):
if n ==
return 0O
elif n == 1:
return 1
else:

return fib(n-2) + fib(n-1)

A Tree-Recursive Process

~ -
-
n~~
~
~
~

~

- -,
.~~
~

CSmm

..--

” iy

(demo)

A Tree-Recursive Process

fib(3) fib(4)
/ AN
fib(1) fib(2)
| / AN .
1 fib(@) fib(1) /flbm\
‘ ‘ fib(Q) fib(1)
0 1 ‘ ‘
0 1

Break!

Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using
parts up to size m, 1is the number of ways in which n can be
expressed as the sum of positive integer parts up to m 1in
increasing order.

count_partitions(6, 4)

How many different ways can I give out
6 pieces of chocolate i1f nobody can
have more than 4 pieces?

2 +4 =06
1+1+4=26 2 +2+2 =6

1 + 2 =0
3+3=60 1+1+1+2=6

1 + 3 =6 1+1+1+1+1+1=2606

Counting Partitions

The number of partitions of a positive integer n, using
parts up to size m, 1is the number of ways in which n can be
expressed as the sum of positive integer parts up to m 1in
increasing order.

2+ 4 =6 eoe oo
1+1+4=6 - o L C N N)
3+3=6 cee cee
1+2+3=6 - oo cee
1 +1+1+3=686 - e e oo e
2 +2+2=6 eoe o oo
1+2+2=6 - ®© oo oo
1+ 1+ 2 =6 ‘l’ ‘l' ‘l’ ‘l' |l"l’

1+1+1+1+1+1=6 - o o o o =

Counting Partitions

The number of partitions of a positive integer n, using
parts up to size m, 1is the number of ways in which n can be
expressed as the sum of positive integer parts up to m 1in
increasing order.

- Recursive decomposition: = ot

finding simpler 1instances :
of the problem. i
- Explore two possibilities:
- Use at least one 4
- Don't use any 4
- Solve two simpler
problems:
- count_partitions(2, 4) = =
- count_partitions(6, 3) = = =:
- Tree recursion often :
involves exploring
different choices.

Counting Partitions

The number of partitions of a positive integer n, using
parts up to size m, 1is the number of ways in which n can be
expressed as the sum of positive integer parts up to m 1in

increasing order.

Recursive decomposition:
finding simpler 1i1nstances
of the problem.

Explore two possibilities:
Use at least one 4
Don't use any 4

Solve two simpler

problems:
count_partitions(2, 4)
count_partitions(6, 3)

Tree recursion often

involves exploring

different choices.

def count partitions(n, m):

if n O:
return 1
elif n O:
return 0
elif m O:
return 0
else:
with m = count partitions(n-m, m)
without m =

return with m + without m

count partitions(n, m-1)

