
Brian Hou
June 29, 2016

Lecture 7: Tree Recursion

Announcements

• Project 1 is due tomorrow, +1 EC point if submitted today
• Run ok --submit to check against hidden tests
• Check your submission at ok.cs61a.org
• Invite your partner (watch this video)

• Homework 2 is due today, Homework 1 solutions uploaded
• Quiz 2 is tomorrow at the beginning of lecture

• If you have an alternate time or are not enrolled in
the class, please arrive at 11:45 am

• Week 2 checkoff must be done in lab today or tomorrow
• Talk about hw01, lab02, lab03 with a lab assistant

• Alternate Exam Request: goo.gl/forms/FDQix4I5dNXPQDgw2

http://ok.cs61a.org
https://youtu.be/3qx_RfKbvuQ
http://goo.gl/forms/FDQix4I5dNXPQDgw2

Hog Contest Rules

• Up to two people submit one entry;
max one entry per person

• Your score is the number of entries
against which you win more than
50.00001% of the time

• All strategies must be deterministic,
pure functions of the current player
and opponent scores

• Top 3 entries will receive EC
• The real prize: honor and glory

• Also: bragging rights

Ready? cs61a.org/proj/hog_contest

http://cs61a.org/proj/hog_contest

Roadmap

• This week (Functions), the goals are:
• To understand the idea of

functional abstraction
• To study this idea through:

• higher-order functions
• recursion
• orders of growth

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Recursion

The Cascade Function

Output

123
12
1
12

• Each cascade frame
is from a different
call to cascade.

• Until the Return
value appears, that
call has not
completed.

• Any statement can
appear before or
after the recursive
call.

(demo)

Two Definitions of Cascade

• If two implementations are equally clear, then
shorter is usually better

• In this case, the longer implementation is more
clear (to me)

• When learning to write recursive functions, put
base cases first

def cascade(n):

 if n < 10:

 print(n)

 else:

 print(n)

 cascade(n // 10)

 print(n)

def cascade(n):

 print(n)

 if n >= 10:

 cascade(n // 10)

 print(n)

(demo)

Inverse Cascade

Output

1
12
123
1234
123
12
1

def inverse_cascade(n):

 grow(n)

 print(n)

 shrink(n)

def f_then_g(f, g, n):

 if n:

 f(n)

 g(n)

grow = lambda n: f_then_g(grow, print, n // 10)

shrink = lambda n: f_then_g(print, shrink, n // 10)

Fibonacci

The Fibonacci Sequence

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

The Fibonacci Sequence

def fib(n):

 pred, curr = 0, 1

 k = 1

 while k < n:

 pred, curr = curr, pred + curr

 k += 1

 return curr
The next Fibonacci number

is the sum of the two
previous Fibonacci numbers

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

The Fibonacci Sequence

def fib(n):

 if n == 0:

 return 0

 pred, curr = 0, 1

 k = 1

 while k < n:

 pred, curr = curr, pred + curr

 k += 1

 return curr
The next Fibonacci number

is the sum of the two
previous Fibonacci numbers

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

This correction was
made on July 3 at 10PM

The Fibonacci Sequence

def fib(n):

 if n == 0:

 return 0

 elif n == 1:

 return 1

 else:

 return fib(n-2) + fib(n-1)

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

The next Fibonacci number
is the sum of the two

previous Fibonacci numbers

Tree Recursion

def fib(n):

 if n == 0:

 return 0

 elif n == 1:

 return 1

 else:

 return fib(n-2) + fib(n-1)

Tree-shaped processes arise whenever executing the body of
a recursive function makes more than one recursive call

A Tree-Recursive Process

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

(demo)

A Tree-Recursive Process

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Break!

Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using
parts up to size m, is the number of ways in which n can be
expressed as the sum of positive integer parts up to m in
increasing order.

How many different ways can I give out
6 pieces of chocolate if nobody can
have more than 4 pieces?

count_partitions(6, 4)

2 + 4 = 6
1 + 1 + 4 = 6

3 + 3 = 6
1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6

1 + 1 + 2 + 2 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6

1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using
parts up to size m, is the number of ways in which n can be
expressed as the sum of positive integer parts up to m in
increasing order.

2 + 4 = 6
1 + 1 + 4 = 6

3 + 3 = 6
1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6

1 + 1 + 2 + 2 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6

1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using
parts up to size m, is the number of ways in which n can be
expressed as the sum of positive integer parts up to m in
increasing order.

• Recursive decomposition:
finding simpler instances
of the problem.
• Explore two possibilities:
• Use at least one 4
• Don't use any 4
• Solve two simpler
problems:
• count_partitions(2, 4)
• count_partitions(6, 3)
• Tree recursion often
involves exploring
different choices.

def count_partitions(n, m):

 if n == 0:

 return 1

 elif n < 0:

 return 0

 elif m == 0:

 return 0

 else:

Counting Partitions

The number of partitions of a positive integer n, using
parts up to size m, is the number of ways in which n can be
expressed as the sum of positive integer parts up to m in
increasing order.

• Recursive decomposition:
finding simpler instances
of the problem.
• Explore two possibilities:
• Use at least one 4
• Don't use any 4
• Solve two simpler
problems:
• count_partitions(2, 4)
• count_partitions(6, 3)
• Tree recursion often
involves exploring
different choices.

 with_m = count_partitions(n-m, m)

 without_m = count_partitions(n, m-1)

 return with_m + without_m

