Lecture 7: Tree Recursion

Brian Hou
June 29, 2016

Announcements

- Project 1 is due tomorrow, +1 EC point if submitted today
- Run ok --submit to check against hidden tests
- Check your submission at ok.cs61a.org
- Invite your partner (watch this video)
- Homework 2 is due today, Homework 1 solutions uploaded
- Quiz 2 is tomorrow at the beginning of lecture
- If you have an alternate time or are not enrolled in the class, please arrive at 11:45 am
- Week 2 checkoff must be done in lab today or tomorrow - Talk about hw01, lab02, lab03 with a lab assistant
- Alternate Exam Request: goo.gl/forms/FDQix4I5dNXPQDgw2

Hog Contest Rules

- Up to two people submit one entry; max one entry per person
- Your score is the number of entries against which you win more than 50.00001\% of the time
- All strategies must be deterministic, pure functions of the current player and opponent scores
- Top 3 entries will receive EC
- The real prize: honor and glory - Also: bragging rights

Ready? cs61a.org/proj/hog_contest

Roadmap

Introduction	This week (Functions), the goals are: - To understand the idea of functional abstraction
Functions	
Data	
Mutability	- To study this idea through:
Objects	- recursion
Interpretation	- orders of growth
Paradigms	
Applications	

Recursion
The Cascade Function
(demo)

Two Definitions of Cascade
(demo)
def $\operatorname{cascade}(n): \quad$ def cascade(n):

$$
\text { if } \mathrm{n}<10:
$$

print(n)
else:
print(n)
cascade($\mathrm{n} / / 10$)
print(n)

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (to me)
- When learning to write recursive functions, put base cases first
print(n)
if $\mathrm{n}>=10$:
cascade(n // 10) print(n)
\qquad

Fibonacci
$\mathrm{n}: 0,1,2,3,4,5,6,7,8$, fib(n): $0,1,1,2,3,5,8,13,21$,
def $\mathrm{fib}(\mathrm{n})$:
pred, curr $=0,1$
$\mathrm{k}=1$
while $\mathrm{k}<\mathrm{n}$:
pred, curr $=$ curr, pred + curr
k $+=1$
eturn curr

The Fibonacci Sequence
n: $0,1,2,3,4,5,6,7,8$, fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21,
def $\mathrm{fib}(\mathrm{n})$:

return 0 made on July 3 at 10PM
pred, curr $=0$, 1
k $=1$
while $\mathrm{k}<\mathrm{n}$:
pred, curr $=$ curr, pred + curr
return curr

The Fibonacci Sequence
$\mathrm{n}: 0,1,2,3,4,5,6,7,8$,
fib(n): 0, 1, $1,2,3,5,8,13,21$,
def $\mathrm{fib}(\mathrm{n})$:
if $\mathrm{n}=0$:
return 0
elif $\mathrm{n}==1$:
return 1
else:
return $f i b(n-2)+f i b(n-1)$
The next Fibonacci number
is the sum of the two
previous Fibonacci numbers

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call
def $\mathrm{fib}(\mathrm{n})$:
if $\mathrm{n}=0$:
return 0
elif $\mathrm{n}==1$:
return 1
else:
return $\mathrm{fib}(\mathrm{n}-2)+\mathrm{fib}(\mathrm{n}-1)$

A Tree-Recursive Process

Break!

Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

count_partitions(6, 4)

How many different ways can I give out 6 pieces of chocolate if nobody can have more than 4 pieces?

$2+4=6$
$1+1+4=6 \quad 2+2+2=6$
$1+1+2+2=6$
$3+3=6 \quad 1+1+1+1+2=6$
$1+2+3=6$
$1+1+1+3=6 \quad 1+1+1+1+1+1=6$

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
$2+4=6$
$1+1+4=6$
$3+3=6$
$1+2+3=6$
$1+1+1+3=6$
$2+2+2=6$
$1+1+2+2=6$
$1+1+1+1+2=6$
$1+1+1+1+1+1=6$

Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

Recursive decomposition: finding simpler instances of the problem.
Explore two possibilities:
Use at least one 4

- Use at least one

Solve two simpler
Solve two
problems:
count_partitions(2, 4) = =

- count partitions (6, 3)

Tree recursion often
involves exploring different choices.

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order. def count_partitions(n, m):
Recursive decomposition: if $\mathrm{n}==0$:
finding simpler instances
return 1
of the problem.
Explore two possibilities: elif $n<0$.
Use at least one
Don't use any 4
Solve two simpler
problems:
count_partitions(2, 4)
return 0
count_partitions(6,
elif $m=$
return 0
count_partitions $(6,3)$, else:
involves exploring \quad..with_m = count_partitions (n-m, m) different choices. *- without_m = count_partitions(n, m-1) return with_m + without_m

