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There’s more than one way to do it
For the past two weeks, we talked about how to solve 
a problem correctly.
But what if there are multiple ways to solve a 
problem correctly? For example, square may be 
implemented in two ways.
Are some ways “better” than others?



There’s more than one way to do it
def square(n):

a, b, total = 0, n, 0
while b:

a, b = a + 1, b - 1
total = total + a + b

return total

def square(n):

return n * n 



There’s more than one way to do it
Usually, there are many ways to solve the same problem. In jargon: 
there are many ways to implement the same functional abstraction.
e.g. Factoring N: 

def factor_clever(N):
factors = []
i = 1
while i <= N ** 0.5:

if N % i == 0:
factors += [i, N/i]

return factors

def factor_naive(N):
factors = []
i = 1
while i <= N:

if N % i == 0:
factors += [i]

return factors



The cleverness: proof by picture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16



The cleverness: dense math proof
1. Checking if divides is the same as checking if       

divides . 

2. If divides , then divides .

is evidently smaller than .

4. We’ve already checked all numbers smaller than 
, so there’s no need to check +1.



Why do we care?
Speed!
The naïve way divides N times. The clever way 
divides √N times.
This may not seem like a big deal, but…



Why do we care?
“Amazon calculated that a page load slowdown of 
just one second could cost it $1.6 billion in sales each 
year. Google has calculated that by slowing its search 
results by just four tenths of a second they could lose 
8 million searches per day.”

http://www.fastcompany.com/1825005/how-one-
second-could-cost-amazon-16-billion-sales



Why do we care?
To take an extreme example, consider 
the game of Go: 
Go is a very complicated game. It is 
probably the most complex board game 
that is widely played by humans.
Two players play each other. Each turn, 
a player can make one of approximately 
200 choices. There are about 150 turns.



Why do we care?
Naïve way: Try all sequences of moves and 
find the best sequence of moves. 
There are approximately 150 turns in a game 
and 200 possible choices per step. This is 
200150 possible games. 
If each atom in the Universe did one step of 
computation each nanosecond, the Universe 
would need to start over about four times to 
try all sequences of moves and find the best 
sequence of moves.



Why do we care?
Clever way: As far as we know, there is no 
clever way to solve the game of Go! There 
are some ways to generate approximate 
solutions, such as using Google’s AlphaGo, 
or using the human brain. More on this at 
the end of lecture, if we have time.
We simply do not know how to solve 
some really hard but really important 
problems. (We can find approximations.)



How do we care?
How do we claim mathematically that one function 
runs faster than another? 
A function is executed on some input. For example: in 
the factoring function, the input is the number we 
want to factor. 
How long a function takes to run depends on the size 
of the input. 



How do we care?
What we want to know: given some function, 
such as factor, how long will this function 
take to run? 
Roughly, how many lines of code will this 
function need to execute? How does this 
depend on the size of the input?



How do we care?

For every function f(N),
We can find a function g(N):

g(N) describes how long f(N) takes to run as a 
function of N.



We don’t care about…
We don’t need to know exactly
how the run-time grows as the 
size of the input increases. 
We only want a rough idea. 
To get a rough idea, we look from 
a birds-eye view.
That is, we look at the shape of 
g(N) as N gets really, really big.



Mole’s eye view vs. Bird’s eye view



We don’t care about…
More precisely, we don’t care about
◦ Constant factors
◦ Any term that is not the largest term
For example:
◦ g1(N) = 3N2 + N vs. g2(N) = N2+ 6: we treat both functions as about 

the same; we say both take quadratic time and denote this as 
Ө(N2).

◦ g3(N) = 35N vs. g4(N) = N + 49: we treat both functions as about 
the same; we say both take linear time and denote this as Ө(N).



Why the lack of care?
Mathematical rigorousness: it saves you the 
headache of trivialities and it’s useful to think of g(n) 
as n approaches infinity
Moore’s law: computers are always getting 
exponentially faster
Constant factors/small terms are easier to reduce: 
even if you reduce constant factors, that doesn’t tell 
you much about the nature of the problem



Mathematical Definition
N: size of the input

R(N): how long it takes to run the function on input of size N

R(N) = θ(g(N))
Means that there are positive constants k1 and k2 such that

k1 · g(N) ≤ R(N) ≤ k2 · g(N) 
For all n larger than some minimum m



Constant Time

Ө(1)
Fastest
Runtime doesn’t depend 
on size of input

def square(x):

return x * x

def add(x, y):

return x + y



Logarithmic Time

Ө(log N)
Very fast
Runtime increases with 
input, but very little

def exp_decay(x):

if x == 0:

return 1

else:

return exp_decay(x//2) + 1 



Linear Time

Ө(N)
Pretty fast
Runtime increases 
linearly with input

def sum_all(lst):

result = 0

for e in lst:

result += e

return result



Quadratic Time

Ө(N2)
Not fast
Runtime increases 
quadratically with input

def print_all_pairs(lst):

for i in lst:

for j in lst:

print(i, j)



Exponential Time

Ө(2N)
Intractable
Runtime increases 
extremely fast with input

def fork_bomb(n):

if n == 0:

return 1

return fork_bomb(n - 1) + 
fork_bomb(n – 1)

n

n-1 n-1

n-2 n-2 n-2 n-2



How to determine orders of growth
In CS61A, we particularly care about orders of growth when 
writing iterative or recursive code.
Iteration:
◦ How long does each iteration take?
◦ How many times do we loop?
Recursion:
◦ How long does each call to the function take?
◦ How many times do we call the function?



Examples
def mystery1(n):

x = 0
for i in range(n):

x += 1
return x

def mystery2(n):
if n == 0:

return 0
return mystery2(n-1) + 1

def mystery3(n):
x = 0
for i in range(n):

for j in range(i):
x += 1

return x

def mystery4(n):
x = 1
while x < n:

x *= 2
return x

Ө(N)

Ө(N) Ө(N2)

Ө(logN)



Examples
def mystery5(n):

if n > 0:
return mystery5(-n)+ 

mystery5(-n)
else:

return 0
def mystery6(n):

i = 0

while i > 0:

i += 1

return n

def mystery7(n):
if n == 0:

return 1
return mystery8(n-1) + 

mystery8(n-1)
def mystery8(n):

if n == 0:

return 1

return mystery7(n-1) + 
mystery7(n-1)
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Why do we care?
What seems harder: factoring n, or finding the nth Fibonacci number?

Counter to intuition, factoring is a much harder problem!

Some problems are inherently harder than others. Theoretical 
computer science is in the business of classifying problems by how hard 
they are.

P vs. NP and the Computational Complexity Zoo:

https://www.youtube.com/watch?v=YX40hbAHx3s


