
Marvin Zhang
07/05/2016

Lecture 9: Data Abstraction

Announcements

http://cs61a.org/

Roadmap

• This week (Data), the goals are:
• To continue our journey through

abstraction with data abstraction
• To study useful data types we can

construct with data abstraction

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

A combined expression that evaluates to a list using this
evaluation procedure:

1. Add a new frame with the current frame as its parent

2. Create an empty result list

3. For each element in the sequence from <seq exp>:

1.Bind <name> to that element in the new frame

2.If <filter exp> evaluates to a true value, then add
the value of <map exp> to the result list

List Comprehensions (demo)

Short version: [<map exp> for <name> in <seq exp>]

[<map exp> for <name> in <seq exp> if <filter exp>]

Data Abstraction

• Python (and other languages) implements for us some
primitive data types, such as numbers and strings

• But most data that we care about are compound values,
rather than just a single value like a number or string
• A date is three numbers: year, month, and day
• A location is two numbers: latitude and longitude

• Data abstraction allows us to manipulate compound values
as units, rather than having to deal with their parts

Data Abstraction

• Great programmers use data abstraction to separate:
• How compound values are represented (the parts)
• How compound values are used (the unit)
• This leads to programs that are more understandable,

easier to maintain, and just better in general

• The separation is called the abstraction barrier
• Most important thing I’ll say today:

Never violate the abstraction barrier!

Example: Rational Numbers

• Rational numbers are numbers that can be expressed as 
 
 
 
 
 
where n and d are both integers

• So a rational number can be represented as two numbers,
making it a compound value

• This is an exact representation of fractions
• If we instead use floats to represent fractions, we can

lose the exact representation if we perform division

(demo)

n

d

• To represent a compound data type, we must have:

1. Constructors that allow us to construct new
instances of the data type

2. Selectors that allow us to access the different
parts of the data type

• These are typically both functions

Representing Rational Numbers

def rational(n, d):
 """Return the rational number with numerator n  
 and denominator d."""
 ...

def numer(rat):
 """Return the numerator of  
 the rational number rat."""
 ...

def denom(rat):
 """Return the denominator of  
 the rational number rat."""
 ...

def numer(rat):
 """Return the numerator of  
 the rational number rat."""
 ...

def denom(rat):
 """Return the denominator of  
 the rational number rat."""
 ...

def rational(n, d):
 """Return the rational number with numerator n  
 and denominator d."""
 ...

Using Rational Numbers

def mul_rational(rat1, rat2):
 """Multiply rat1 and rat2 and return a new rational number."""
 return rational(numer(rat1) * numer(rat2),  
 denom(rat1) * denom(rat2))

Multiplying two rational numbers:
c

d

a

b
* =

ac

bd

(demo)

Implementing Rational Numbers

• There are many different ways we could choose to
implement rational numbers

• One of the simplest is to use lists

from fractions import gcd # Greatest common divisor
def rational(n, d):
 """Return the rational number with numerator n  
 and denominator d."""
 divisor = gcd(n, d) # Reduce to lowest terms
 return [n//divisor, d//divisor]

def numer(rat):
 """Return the numerator of  
 the rational number rat."""
 return rat[0]

def denom(rat):
 """Return the denominator of  
 the rational number rat."""
 return rat[1]

(demo)

The almighty abstraction barrier!

The Abstraction Barrier

The Abstraction Barrier

Data Type
Implementation

Rational numbers as
two-element lists

Data Type
Usage

Rational numbers as
a unit and its parts

[n, d]
rat[0]
rat[1]

mul_rational
add_rational
print_rational

Abstraction
Barrier

Constructors and Selectors
rational, numer, denom

Abstraction Barrier Violations

• Constructors and selectors provide us with abstraction,
allowing us to use the data type without having to know
its implementation

• An abstraction barrier violation is when we assume
knowledge about the data type implementation, rather than
using constructors and selectors

• Remember the most important thing I’ll say today:

• Why is this such a bad thing?

Never violate the abstraction barrier!

Abstraction Barrier Violations

from fractions import gcd
def rational(n, d):
 divisor = gcd(n, d)
 return [n//divisor,  
 d//divisor]

def numer(rat):
 return rat[0]

def denom(rat):
 return rat[1]

def mul_rational(rat1, rat2):
 return [rat1[0]*rat2[0],  
 rat1[1]*rat2[1]]

No selectors!

No constructor either!

#	You	write	many	more	lines	of	code	
#	with	abstraction	barrier	violations...

Abstraction Barrier Violations

from fractions import gcd
def rational(n, d):
 divisor = gcd(n, d)
 return {'n': n//divisor,  
 'd': d//divisor}

def numer(rat):
 return rat['n']

def denom(rat):
 return rat['d']

def mul_rational(rat1, rat2):
 return [rat1[0]*rat2[0],  
 rat1[1]*rat2[1]]

No selectors!

No constructor either!

• Switching data type implementations breaks mul_rational!
Along with the rest of your code...

• If we don’t violate abstraction, everything will always
work if we keep our constructors and selectors consistent

#	You	write	many	more	lines	of	code	
#	with	abstraction	barrier	violations...

(demo)

A Dictionary Abstract Data Type

Summary

• Data abstraction provides us with a powerful set of ideas
for working with compound values
• Using abstraction allows us to think about data types

in terms of units and parts, rather than worrying about
the implementation

• This leads to programs that are easier to maintain and
easier to understand

• An abstraction barrier violation is when we assume
knowledge about the underlying data type implementation
• One more time for emphasis:

Never violate the abstraction barrier!

