Lecture 9: Data Abstraction

Marvin Zhang
07/05/2016

Announcements

http://cs61a.org/

Roadmap

Introduction
Functions
This week (Data), the goals are:
Data - To continue our journey through
abstraction with data abstraction
[Mu'tabilit)’] - To study useful data types we can
construct with data abstraction
(@bjects)
(Interpretation)
(%aradigms]

(Applications)

List Comprehensions (demo)

[<map exp> for <name> in <seq exp> if <filter exp>]

Short version: [<map exp> for <name> in <seq exp>]
A combined expression that evaluates to a list using this
evaluation procedure:

1. Add a new frame with the current frame as its parent
2. Create an empty result list
3. For each element in the sequence from <seq exp>:

1. Bind <name> to that element 1in the new frame

2.1f <filter exp> evaluates to a true value, then add
the value of <map exp> to the result list

Data Abstraction

- Python (and other languages) implements for us some
primitive data types, such as numbers and strings

« But most data that we care about are compound values,
rather than just a single value like a number or string

- A date 1s three numbers: year, month, and day

A location 1s two numbers: latitude and longitude

« Data abstraction allows us to manipulate compound values
as units, rather than having to deal with their parts

Data Abstraction

« Great programmers use data abstraction to separate:
- How compound values are represented (the parts)
- How compound values are used (the unit)

- This leads to programs that are more understandable,
easier to maintain, and just better 1in general

« The separation 1s called the abstraction barrier

« Most important thing I’'1ll say today:

Never violate the abstraction barrier!

Example: Rational Numbers (demo)

Rational numbers are numbers that can be expressed as

n

d

where n and d are both integers

So a rational number can be represented as two numbers,
making 1t a compound value

This 1s an exact representation of fractions

If we instead use floats to represent fractions, we can
lose the exact representation if we perform division

Representing Rational Numbers

- To represent a compound data type, we must have:

1. Constructors that allow us to construct new
instances of the data type

2. Selectors that allow us to access the different
parts of the data type

« These are typically both functions

def rational(n, d):
"""Return the rational number with numerator n
and denominator d."""

def numer(rat): def denom(rat):
"""Return the numerator of Return the denominator of

the rational number rat. the rational number rat.

Using Rational Numbers (demo)

def rational(n, d):
"""Return the rational number with numerator n

and denominator 4."""

def numer(rat): def denom(rat):
"""Return the numerator of """Return the denominator of
the rational number rat.""" the rational number rat."""
- | a C ac
Multiplying two rational numbers: — x — =

b d bd

def mul rational(ratl, rat2):
"""Multiply ratl and rat2 and return a new rational number.
return rational (numer(ratl) * numer(rat2),
denom(ratl) * denom(rat2))

Implementing Rational Numbers (demo)

There are many different ways we could choose to
implement rational numbers

One of the simplest i1is to use lists

from fractions import gcd # Greatest common divisor
def rational(n, d):
"""Return the rational number with numerator n
and denominator d4d."""
divisor = gcd(n, d) # Reduce to lowest terms
return [n//divisor, d//divisor]

def numer(rat): def denom(rat):
"""Return the numerator of Return the denominator of

the rational number rat. the rational number rat.
return rat[0] return rat|[1]

The Abstraction Barrier

The almighty abstraction barrier!

The Abstraction Barrier

mul rational
add rational
print rational

Data Type Rational numbers as
Usage a unit and 1ts parts

J

y
B! .
&/ // = Abstraction &

N

Barrier
2y

‘\] ‘\l < (@onstructors and Selector%}
\ rational, numer, denom
: (n, d]
Data Type Rational numbers as ratl 0
Implementation two—element lists rattl:

Abstraction Barrier Violations

Constructors and selectors provide us with abstraction,
allowing us to use the data type without having to know
i1ts i1mplementation

An abstraction barrier violation is when we assume
knowledge about the data type implementation, rather than
using constructors and selectors

Remember the most important thing I’'ll say today:

Never violate the abstraction barrier!

Why 1s this such a bad thing?

Abstraction Barrier Violations

from fractions import gcd def mul rational(ratl, rat2):

def rational(n, d): return [ratl[0]*rat2[0],

divisor = gcd(n, d) ratl[1]*rat2[1]]
return [n//divisor,
d//divisor]

(No selectors{)

def numer(rat):

1 |
return rat (0] (No constructor either!)

def denom(rat): # You write many more lines of code
return rat[1] # with abstraction barrier violations...

Abstraction Barrier Violations

from fractions import gcd def mul rational(ratl, rat2):
def rational(n, d): return [ratl[0]*rat2[0],
divisor = gcd(n, d) ratl[1l]*rat2[1]]

return {'n': n//divisor,
'd': d//divisor}

(No selectors{)

def numer(rat):

1 |
return rat|'n'| (No constructor either!)

def denom(rat): # You write many more lines of code
return rat['d'] # with abstraction barrier violations...

- Switching data type implementations breaks mul rational!
Along with the rest of your code...

- If we don’t violate abstraction, everything will always
work 1f we keep our constructors and selectors consistent

A Dictionary Abstract Data Type

(demo)

Summary

« Data abstraction provides us with a powerful set of ideas
for working with compound values

- Using abstraction allows us to think about data types
in terms of units and parts, rather than worrying about
the implementation

 This leads to programs that are easier to maintain and
easlier to understand

« An abstraction barrier violation 1s when we assume
knowledge about the underlying data type implementation

 One more time for emphasis:

Never violate the abstraction barrier!

