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• Run ok --submit to check against hidden tests
• Check your submission at ok.cs61a.org
• Invite your partner (watch this video)

• Homework 4 is due 7/7
• Quiz 3 is tomorrow at the beginning of lecture

• If you have an alternate time or are not enrolled in 
the class, please arrive at 11:45 am

• Quiz 4 will be released 9 am on 7/11, due 10 am on 7/12
• 61A Potluck on 7/8! 5 - 8 pm (or later) in Wozniak Lounge

• Bring food and board games!
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• 76 contestants
• 20 new challengers on the last day
• 11 new challengers in the last 6 hours

• The winner:

1.Edgar Orendain

1.Going Deep Blue

1.The best team on the 
3rd floor of Davidson (U2)

1.Going DeepMind

Thank you to all the participants!

Full rankings: cs61a.org/proj/hog_contest

http://cs61a.org/proj/hog_contest
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Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Data), the goals are:
• To continue our journey through 

abstraction with data abstraction
• To study useful data types we can 

construct with data abstraction
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Abstraction Barrier Violations

• Constructors and selectors provide us with abstraction, 
allowing us to use the data type without having to know 
its implementation

• An abstraction barrier violation is when we assume 
knowledge about the data type implementation, rather than 
using constructors and selectors

Never violate the abstraction barrier!
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The Sequence Abstraction

Length. A sequence has a finite length. 

Element selection. A sequence has an element 
corresponding to any non-negative integer 
index less than its length, starting at 0.

The sequence abstraction is a collection of behaviors:

Lists and strings are both examples of sequences.

We can use built-in syntax associated with this behavior. 
We can also use functions.

(demo)
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• Another way to implement the sequence abstraction
• Links have two parts

• first: the element in the link
• rest: the next link in the list

• This is a recursive definition: the rest of a linked list 
is another linked list

• This data structure has many names:
• Linked list (C, Java)
• List (Lisp)
• Forward list (C++)
• Linky Listys (TAs)

Linked Lists

1  2  3   
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    list S."""
def rest(s):
    """Return the rest of the elements of a
    linked list S."""

def link(first, rest):
    """Construct a linked list from its first
    element and the rest of the linked list."""

Linked List Abstraction

If a linked list s is constructed from a first element h 
and a linked list t, then 
• first(s) returns h, which is an element of the sequence
• rest(s) returns t, which is a linked list
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Implementing Linked Lists (v1) (demo)

def first(s):
    """Return the first element of a linked
    list S."""
    return s[0]

def rest(s):
    """Return the rest of the elements of a
    linked list S."""
    return s[1]

def link(first, rest):
    """Construct a linked list from its first
    element and the rest of the linked list."""
    return [first, rest]
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def len_link(s):
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def getitem_link(s, i):
    """Return the element at index i."""
    while i > 0:
        s, i = rest(s), i - 1
    return first(s)

def len_link(s):
    """Return the length of the linked list."""
    length = 0
    while s != empty:
        s, length = rest(s), length + 1
    return length

Linked Lists are Sequences

Never violate the abstraction barrier!

(demo)
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def len_link(s):
    """Return the length of the linked list."""
    if s == empty:
        return 0
    else:
        return 1 + len_link(rest(s))
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def getitem_link(s, i):
    """Return the element at index i."""
    if i == 0:
        return first(s)
    else:
        return getitem_link(rest(s), i - 1)

def len_link(s):
    """Return the length of the linked list."""
    if s == empty:
        return 0
    else:
        return 1 + len_link(rest(s))
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def getitem_link(s, i):
    """Return the element at index i."""
    if i == 0:
        return first(s)
    else:
        return getitem_link(rest(s), i - 1)

def len_link(s):
    """Return the length of the linked list."""
    if s == empty:
        return 0
    else:
        return 1 + len_link(rest(s))

Linked Lists are Recursive (demo)

Never violate the abstraction barrier!
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Sequences as Containers (demo)

def contains(s, elem):
    """Return whether ELEM is in the sequence S.
    >>> contains([1, 2, 3], 1)
    True
    >>> contains([1, 2, 3], 4)
    False
    """
    for x in s:
        if x == elem:
            return True
    return False
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Linked Lists as Containers (demo)

def contains_link(s, elem):
    """Return whether ELEM is in the sequence S.
    >>> contains_link(link(1, link(2, link(3, empty))), 1)
    True
    >>> contains_link(link(1, link(2, link(3, empty))), 4)
    False
    """
    if s == empty:
        return False
    if first(s) == elem:
        return True
    else:
        return contains(rest(s), elem)
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Counting Partitions

def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)  
        return with_m + without_m
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    if n == 0:
        return link(empty, empty)
    elif n < 0 or m == 0:
        return empty
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def partitions(n, m):
    if n == 0:
        return link(empty, empty)
    elif n < 0 or m == 0:
        return empty
    else:
        with_m = partitions(n-m, m)
        without_m = partitions(n, m-1)
        add_m = lambda s: link(m, s)
        with_m = map_link(add_m, with_m)
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Enumerating Partitions

def partitions(n, m):
    if n == 0:
        return link(empty, empty)
    elif n < 0 or m == 0:
        return empty
    else:
        with_m = partitions(n-m, m)
        without_m = partitions(n, m-1)
        add_m = lambda s: link(m, s)
        with_m = map_link(add_m, with_m)
        return extend(with_m, without_m)

(demo)
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Implementing Linked Lists (v1)

def first(s):
    """Return the first element of a linked
    list S."""
    return s[0]

def rest(s):
    """Return the rest of the elements of a
    linked list S."""
    return s[1]

def link(first, rest):
    """Construct a linked list from its first
    element and the rest of the linked list."""
    return [first, rest]
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def link(first, rest):
    def dispatch(msg):
        if msg == 'first':
            return first
        elif msg == 'rest':
            return rest
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def link(first, rest):
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        if msg == 'first':
            return first
        elif msg == 'rest':
            return rest
    return dispatch
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    def dispatch(msg):
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            return first
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            return rest
    return dispatch

def first(s):
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def link(first, rest):
    def dispatch(msg):
        if msg == 'brian':
            return first
        elif msg == 'marvin':
            return rest
    return dispatch

def first(s):
    return s('brian')

Implementing Linked Lists (v3)

def rest(s):
    return s('marvin')



Summary

• Linked lists are one implementation of the sequence 
abstraction 

• Linked lists are composed of two parts: 
• first: the element in the link 
• rest: the next link in the list (may be empty) 

• Data abstraction means that the implementation details of 
the first and rest selectors are unnecessary 

• We can use functions to implement linked lists 
• We can use lists to implement dictionaries 
• Therefore, we can use functions to implement 

dictionaries


