
Brian Hou
July 6, 2016

Lecture 10: Linked Lists

Announcements

Announcements

• Project 2 is due 7/12 (+1 EC point if submitted 7/12)

http://ok.cs61a.org
https://youtu.be/3qx_RfKbvuQ

Announcements

• Project 2 is due 7/12 (+1 EC point if submitted 7/12)
• Run ok --submit to check against hidden tests

http://ok.cs61a.org
https://youtu.be/3qx_RfKbvuQ

Announcements

• Project 2 is due 7/12 (+1 EC point if submitted 7/12)
• Run ok --submit to check against hidden tests
• Check your submission at ok.cs61a.org

http://ok.cs61a.org
https://youtu.be/3qx_RfKbvuQ

Announcements

• Project 2 is due 7/12 (+1 EC point if submitted 7/12)
• Run ok --submit to check against hidden tests
• Check your submission at ok.cs61a.org
• Invite your partner (watch this video)

http://ok.cs61a.org
https://youtu.be/3qx_RfKbvuQ

Announcements

• Project 2 is due 7/12 (+1 EC point if submitted 7/12)
• Run ok --submit to check against hidden tests
• Check your submission at ok.cs61a.org
• Invite your partner (watch this video)

• Homework 4 is due 7/7

http://ok.cs61a.org
https://youtu.be/3qx_RfKbvuQ

Announcements

• Project 2 is due 7/12 (+1 EC point if submitted 7/12)
• Run ok --submit to check against hidden tests
• Check your submission at ok.cs61a.org
• Invite your partner (watch this video)

• Homework 4 is due 7/7
• Quiz 3 is tomorrow at the beginning of lecture

http://ok.cs61a.org
https://youtu.be/3qx_RfKbvuQ

Announcements

• Project 2 is due 7/12 (+1 EC point if submitted 7/12)
• Run ok --submit to check against hidden tests
• Check your submission at ok.cs61a.org
• Invite your partner (watch this video)

• Homework 4 is due 7/7
• Quiz 3 is tomorrow at the beginning of lecture

• If you have an alternate time or are not enrolled in
the class, please arrive at 11:45 am

http://ok.cs61a.org
https://youtu.be/3qx_RfKbvuQ

Announcements

• Project 2 is due 7/12 (+1 EC point if submitted 7/12)
• Run ok --submit to check against hidden tests
• Check your submission at ok.cs61a.org
• Invite your partner (watch this video)

• Homework 4 is due 7/7
• Quiz 3 is tomorrow at the beginning of lecture

• If you have an alternate time or are not enrolled in
the class, please arrive at 11:45 am

• Quiz 4 will be released 9 am on 7/11, due 10 am on 7/12

http://ok.cs61a.org
https://youtu.be/3qx_RfKbvuQ

Announcements

• Project 2 is due 7/12 (+1 EC point if submitted 7/12)
• Run ok --submit to check against hidden tests
• Check your submission at ok.cs61a.org
• Invite your partner (watch this video)

• Homework 4 is due 7/7
• Quiz 3 is tomorrow at the beginning of lecture

• If you have an alternate time or are not enrolled in
the class, please arrive at 11:45 am

• Quiz 4 will be released 9 am on 7/11, due 10 am on 7/12
• 61A Potluck on 7/8! 5 - 8 pm (or later) in Wozniak Lounge

http://ok.cs61a.org
https://youtu.be/3qx_RfKbvuQ

Announcements

• Project 2 is due 7/12 (+1 EC point if submitted 7/12)
• Run ok --submit to check against hidden tests
• Check your submission at ok.cs61a.org
• Invite your partner (watch this video)

• Homework 4 is due 7/7
• Quiz 3 is tomorrow at the beginning of lecture

• If you have an alternate time or are not enrolled in
the class, please arrive at 11:45 am

• Quiz 4 will be released 9 am on 7/11, due 10 am on 7/12
• 61A Potluck on 7/8! 5 - 8 pm (or later) in Wozniak Lounge

• Bring food and board games!

http://ok.cs61a.org
https://youtu.be/3qx_RfKbvuQ

Hog Contest

Hog Contest

• 76 contestants

http://cs61a.org/proj/hog_contest

Hog Contest

• 76 contestants
• 20 new challengers on the last day

http://cs61a.org/proj/hog_contest

Hog Contest

• 76 contestants
• 20 new challengers on the last day
• 11 new challengers in the last 6 hours

http://cs61a.org/proj/hog_contest

Hog Contest

• 76 contestants
• 20 new challengers on the last day
• 11 new challengers in the last 6 hours

• The winner:

http://cs61a.org/proj/hog_contest

Hog Contest

• 76 contestants
• 20 new challengers on the last day
• 11 new challengers in the last 6 hours

• The winner:

1.Edgar Orendain

http://cs61a.org/proj/hog_contest

Hog Contest

• 76 contestants
• 20 new challengers on the last day
• 11 new challengers in the last 6 hours

• The winner:

1.Edgar Orendain

1.Going Deep Blue

http://cs61a.org/proj/hog_contest

Hog Contest

• 76 contestants
• 20 new challengers on the last day
• 11 new challengers in the last 6 hours

• The winner:

1.Edgar Orendain

1.Going Deep Blue

1.The best team on the 
3rd floor of Davidson (U2)

http://cs61a.org/proj/hog_contest

Hog Contest

• 76 contestants
• 20 new challengers on the last day
• 11 new challengers in the last 6 hours

• The winner:

1.Edgar Orendain

1.Going Deep Blue

1.The best team on the 
3rd floor of Davidson (U2)

1.Going DeepMind

http://cs61a.org/proj/hog_contest

Hog Contest

• 76 contestants
• 20 new challengers on the last day
• 11 new challengers in the last 6 hours

• The winner:

1.Edgar Orendain

1.Going Deep Blue

1.The best team on the 
3rd floor of Davidson (U2)

1.Going DeepMind

http://cs61a.org/proj/hog_contest

Hog Contest

• 76 contestants
• 20 new challengers on the last day
• 11 new challengers in the last 6 hours

• The winner:

1.Edgar Orendain

1.Going Deep Blue

1.The best team on the 
3rd floor of Davidson (U2)

1.Going DeepMind

Thank you to all the participants!

http://cs61a.org/proj/hog_contest

Hog Contest

• 76 contestants
• 20 new challengers on the last day
• 11 new challengers in the last 6 hours

• The winner:

1.Edgar Orendain

1.Going Deep Blue

1.The best team on the 
3rd floor of Davidson (U2)

1.Going DeepMind

Thank you to all the participants!

Full rankings: cs61a.org/proj/hog_contest

http://cs61a.org/proj/hog_contest

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Data), the goals are:

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Data), the goals are:
• To continue our journey through

abstraction with data abstraction

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Data), the goals are:
• To continue our journey through

abstraction with data abstraction
• To study useful data types we can

construct with data abstraction

Data Abstraction

Data Abstraction

Data Abstraction

• Great programmers use data abstraction to separate:

Data Abstraction

• Great programmers use data abstraction to separate:
• How compound values are used (the unit)

Data Abstraction

• Great programmers use data abstraction to separate:
• How compound values are used (the unit)

• How compound values are represented (the parts)

Data Abstraction

• Great programmers use data abstraction to separate:
• How compound values are used (the unit)

• How compound values are represented (the parts)

Abstraction
Barrier

Data Abstraction

• Great programmers use data abstraction to separate:
• How compound values are used (the unit)

• How compound values are represented (the parts)

Abstraction
Barrier

Constructors and Selectors

Abstraction Barrier Violations

Abstraction Barrier Violations

• Constructors and selectors provide us with abstraction,
allowing us to use the data type without having to know
its implementation

Abstraction Barrier Violations

• Constructors and selectors provide us with abstraction,
allowing us to use the data type without having to know
its implementation

• An abstraction barrier violation is when we assume
knowledge about the data type implementation, rather than
using constructors and selectors

Abstraction Barrier Violations

• Constructors and selectors provide us with abstraction,
allowing us to use the data type without having to know
its implementation

• An abstraction barrier violation is when we assume
knowledge about the data type implementation, rather than
using constructors and selectors

Never violate the abstraction barrier!

Sequences

The Sequence Abstraction

The Sequence Abstraction

The sequence abstraction is a collection of behaviors:

The Sequence Abstraction

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer
index less than its length, starting at 0.

The sequence abstraction is a collection of behaviors:

The Sequence Abstraction

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer
index less than its length, starting at 0.

The sequence abstraction is a collection of behaviors:

Lists and strings are both examples of sequences.

The Sequence Abstraction

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer
index less than its length, starting at 0.

The sequence abstraction is a collection of behaviors:

Lists and strings are both examples of sequences.

We can use built-in syntax associated with this behavior.
We can also use functions.

The Sequence Abstraction

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer
index less than its length, starting at 0.

The sequence abstraction is a collection of behaviors:

Lists and strings are both examples of sequences.

We can use built-in syntax associated with this behavior.
We can also use functions.

(demo)

Linked Lists

Linked Lists

• Another way to implement the sequence abstraction

Linked Lists

• Another way to implement the sequence abstraction
• Links have two parts

Linked Lists

• Another way to implement the sequence abstraction
• Links have two parts

• first: the element in the link

Linked Lists

• Another way to implement the sequence abstraction
• Links have two parts

• first: the element in the link
• rest: the next link in the list

Linked Lists

• Another way to implement the sequence abstraction
• Links have two parts

• first: the element in the link
• rest: the next link in the list

• This is a recursive definition: the rest of a linked list
is another linked list

Linked Lists

• Another way to implement the sequence abstraction
• Links have two parts

• first: the element in the link
• rest: the next link in the list

• This is a recursive definition: the rest of a linked list
is another linked list

Linked Lists

1

• Another way to implement the sequence abstraction
• Links have two parts

• first: the element in the link
• rest: the next link in the list

• This is a recursive definition: the rest of a linked list
is another linked list

Linked Lists

1 2

• Another way to implement the sequence abstraction
• Links have two parts

• first: the element in the link
• rest: the next link in the list

• This is a recursive definition: the rest of a linked list
is another linked list

Linked Lists

1 2 3

• Another way to implement the sequence abstraction
• Links have two parts

• first: the element in the link
• rest: the next link in the list

• This is a recursive definition: the rest of a linked list
is another linked list

Linked Lists

1 2 3

• Another way to implement the sequence abstraction
• Links have two parts

• first: the element in the link
• rest: the next link in the list

• This is a recursive definition: the rest of a linked list
is another linked list

Linked Lists

1 2 3

• Another way to implement the sequence abstraction
• Links have two parts

• first: the element in the link
• rest: the next link in the list

• This is a recursive definition: the rest of a linked list
is another linked list

Linked Lists

1 2 3

• Another way to implement the sequence abstraction
• Links have two parts

• first: the element in the link
• rest: the next link in the list

• This is a recursive definition: the rest of a linked list
is another linked list

• This data structure has many names:

Linked Lists

1 2 3

• Another way to implement the sequence abstraction
• Links have two parts

• first: the element in the link
• rest: the next link in the list

• This is a recursive definition: the rest of a linked list
is another linked list

• This data structure has many names:
• Linked list (C, Java)
• List (Lisp)
• Forward list (C++)

Linked Lists

1 2 3

• Another way to implement the sequence abstraction
• Links have two parts

• first: the element in the link
• rest: the next link in the list

• This is a recursive definition: the rest of a linked list
is another linked list

• This data structure has many names:
• Linked list (C, Java)
• List (Lisp)
• Forward list (C++)
• Linky Listys (TAs)

Linked Lists

1 2 3

Linked List Abstraction

def link(first, rest):
 """Construct a linked list from its first
 element and the rest of the linked list."""

Linked List Abstraction

def first(s):
 """Return the first element of a linked
 list S."""
def rest(s):
 """Return the rest of the elements of a
 linked list S."""

def link(first, rest):
 """Construct a linked list from its first
 element and the rest of the linked list."""

Linked List Abstraction

def first(s):
 """Return the first element of a linked
 list S."""
def rest(s):
 """Return the rest of the elements of a
 linked list S."""

def link(first, rest):
 """Construct a linked list from its first
 element and the rest of the linked list."""

Linked List Abstraction

If a linked list s is constructed from a first element h
and a linked list t, then

def first(s):
 """Return the first element of a linked
 list S."""
def rest(s):
 """Return the rest of the elements of a
 linked list S."""

def link(first, rest):
 """Construct a linked list from its first
 element and the rest of the linked list."""

Linked List Abstraction

If a linked list s is constructed from a first element h
and a linked list t, then
• first(s) returns h, which is an element of the sequence

def first(s):
 """Return the first element of a linked
 list S."""
def rest(s):
 """Return the rest of the elements of a
 linked list S."""

def link(first, rest):
 """Construct a linked list from its first
 element and the rest of the linked list."""

Linked List Abstraction

If a linked list s is constructed from a first element h
and a linked list t, then
• first(s) returns h, which is an element of the sequence
• rest(s) returns t, which is a linked list

Implementing Linked Lists (v1)

Implementing Linked Lists (v1)

def link(first, rest):
 """Construct a linked list from its first
 element and the rest of the linked list."""

Implementing Linked Lists (v1)

def first(s):
 """Return the first element of a linked
 list S."""

def rest(s):
 """Return the rest of the elements of a
 linked list S."""

def link(first, rest):
 """Construct a linked list from its first
 element and the rest of the linked list."""

Implementing Linked Lists (v1)

def first(s):
 """Return the first element of a linked
 list S."""

def rest(s):
 """Return the rest of the elements of a
 linked list S."""

def link(first, rest):
 """Construct a linked list from its first
 element and the rest of the linked list."""
 return [first, rest]

Implementing Linked Lists (v1)

def first(s):
 """Return the first element of a linked
 list S."""
 return s[0]

def rest(s):
 """Return the rest of the elements of a
 linked list S."""

def link(first, rest):
 """Construct a linked list from its first
 element and the rest of the linked list."""
 return [first, rest]

Implementing Linked Lists (v1)

def first(s):
 """Return the first element of a linked
 list S."""
 return s[0]

def rest(s):
 """Return the rest of the elements of a
 linked list S."""
 return s[1]

def link(first, rest):
 """Construct a linked list from its first
 element and the rest of the linked list."""
 return [first, rest]

Implementing Linked Lists (v1) (demo)

def first(s):
 """Return the first element of a linked
 list S."""
 return s[0]

def rest(s):
 """Return the rest of the elements of a
 linked list S."""
 return s[1]

def link(first, rest):
 """Construct a linked list from its first
 element and the rest of the linked list."""
 return [first, rest]

Linked Lists are Sequences

Linked Lists are Sequences (demo)

def len_link(s):
 """Return the length of the linked list."""
 length = 0
 while s != empty:
 s, length = rest(s), length + 1
 return length

Linked Lists are Sequences (demo)

def getitem_link(s, i):
 """Return the element at index i."""
 while i > 0:
 s, i = rest(s), i - 1
 return first(s)

def len_link(s):
 """Return the length of the linked list."""
 length = 0
 while s != empty:
 s, length = rest(s), length + 1
 return length

Linked Lists are Sequences (demo)

def getitem_link(s, i):
 """Return the element at index i."""
 while i > 0:
 s, i = rest(s), i - 1
 return first(s)

def len_link(s):
 """Return the length of the linked list."""
 length = 0
 while s != empty:
 s, length = rest(s), length + 1
 return length

Linked Lists are Sequences

Never violate the abstraction barrier!

(demo)

Linked Lists are Recursive

Linked Lists are Recursive (demo)

def len_link(s):
 """Return the length of the linked list."""
 if s == empty:
 return 0
 else:
 return 1 + len_link(rest(s))

Linked Lists are Recursive (demo)

def getitem_link(s, i):
 """Return the element at index i."""
 if i == 0:
 return first(s)
 else:
 return getitem_link(rest(s), i - 1)

def len_link(s):
 """Return the length of the linked list."""
 if s == empty:
 return 0
 else:
 return 1 + len_link(rest(s))

Linked Lists are Recursive (demo)

def getitem_link(s, i):
 """Return the element at index i."""
 if i == 0:
 return first(s)
 else:
 return getitem_link(rest(s), i - 1)

def len_link(s):
 """Return the length of the linked list."""
 if s == empty:
 return 0
 else:
 return 1 + len_link(rest(s))

Linked Lists are Recursive (demo)

Never violate the abstraction barrier!

Break!

Linked List Processing

Sequences as Containers

Sequences as Containers (demo)

Sequences as Containers (demo)

def contains(s, elem):
 """Return whether ELEM is in the sequence S.
 >>> contains([1, 2, 3], 1)
 True
 >>> contains([1, 2, 3], 4)
 False
 """
 for x in s:
 if x == elem:
 return True
 return False

Linked Lists as Containers (demo)

Linked Lists as Containers (demo)

def contains_link(s, elem):
 """Return whether ELEM is in the sequence S.
 >>> contains_link(link(1, link(2, link(3, empty))), 1)
 True
 >>> contains_link(link(1, link(2, link(3, empty))), 4)
 False
 """
 if s == empty:
 return False
 if first(s) == elem:
 return True
 else:
 return contains(rest(s), elem)

Linked List Examples

Counting Partitions

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Enumerating Partitions

Enumerating Partitions (demo)

Enumerating Partitions

def partitions(n, m):

(demo)

Enumerating Partitions

def partitions(n, m):
 if n == 0:

(demo)

Enumerating Partitions

def partitions(n, m):
 if n == 0:
 return link(empty, empty)

(demo)

Enumerating Partitions

def partitions(n, m):
 if n == 0:
 return link(empty, empty)
 elif n < 0 or m == 0:

(demo)

Enumerating Partitions

def partitions(n, m):
 if n == 0:
 return link(empty, empty)
 elif n < 0 or m == 0:
 return empty

(demo)

Enumerating Partitions

def partitions(n, m):
 if n == 0:
 return link(empty, empty)
 elif n < 0 or m == 0:
 return empty
 else:

(demo)

Enumerating Partitions

def partitions(n, m):
 if n == 0:
 return link(empty, empty)
 elif n < 0 or m == 0:
 return empty
 else:
 with_m = partitions(n-m, m)

(demo)

Enumerating Partitions

def partitions(n, m):
 if n == 0:
 return link(empty, empty)
 elif n < 0 or m == 0:
 return empty
 else:
 with_m = partitions(n-m, m)
 without_m = partitions(n, m-1)

(demo)

Enumerating Partitions

def partitions(n, m):
 if n == 0:
 return link(empty, empty)
 elif n < 0 or m == 0:
 return empty
 else:
 with_m = partitions(n-m, m)
 without_m = partitions(n, m-1)
 add_m = lambda s: link(m, s)

(demo)

Enumerating Partitions

def partitions(n, m):
 if n == 0:
 return link(empty, empty)
 elif n < 0 or m == 0:
 return empty
 else:
 with_m = partitions(n-m, m)
 without_m = partitions(n, m-1)
 add_m = lambda s: link(m, s)
 with_m = map_link(add_m, with_m)

(demo)

Enumerating Partitions

def partitions(n, m):
 if n == 0:
 return link(empty, empty)
 elif n < 0 or m == 0:
 return empty
 else:
 with_m = partitions(n-m, m)
 without_m = partitions(n, m-1)
 add_m = lambda s: link(m, s)
 with_m = map_link(add_m, with_m)
 return extend(with_m, without_m)

(demo)

Other Linked List Implementations

Implementing Linked Lists (v1)

def first(s):
 """Return the first element of a linked
 list S."""
 return s[0]

def rest(s):
 """Return the rest of the elements of a
 linked list S."""
 return s[1]

def link(first, rest):
 """Construct a linked list from its first
 element and the rest of the linked list."""
 return [first, rest]

Implementing Linked Lists (v2)

def link(first, rest):

Implementing Linked Lists (v2)

def link(first, rest):

def first(s):

Implementing Linked Lists (v2)

def rest(s):

def link(first, rest):
 def dispatch(msg):

def first(s):

Implementing Linked Lists (v2)

def rest(s):

def link(first, rest):
 def dispatch(msg):
 if msg == 'first':

def first(s):

Implementing Linked Lists (v2)

def rest(s):

def link(first, rest):
 def dispatch(msg):
 if msg == 'first':
 return first

def first(s):

Implementing Linked Lists (v2)

def rest(s):

def link(first, rest):
 def dispatch(msg):
 if msg == 'first':
 return first
 elif msg == 'rest':

def first(s):

Implementing Linked Lists (v2)

def rest(s):

def link(first, rest):
 def dispatch(msg):
 if msg == 'first':
 return first
 elif msg == 'rest':
 return rest

def first(s):

Implementing Linked Lists (v2)

def rest(s):

def link(first, rest):
 def dispatch(msg):
 if msg == 'first':
 return first
 elif msg == 'rest':
 return rest
 return dispatch

def first(s):

Implementing Linked Lists (v2)

def rest(s):

def link(first, rest):
 def dispatch(msg):
 if msg == 'first':
 return first
 elif msg == 'rest':
 return rest
 return dispatch

def first(s):
 return s('first')

Implementing Linked Lists (v2)

def rest(s):

def link(first, rest):
 def dispatch(msg):
 if msg == 'first':
 return first
 elif msg == 'rest':
 return rest
 return dispatch

def first(s):
 return s('first')

Implementing Linked Lists (v2)

def rest(s):
 return s('rest')

def link(first, rest):
 def dispatch(msg):
 if msg == 'first':
 return first
 elif msg == 'rest':
 return rest
 return dispatch

def first(s):
 return s('first')

Implementing Linked Lists (v2) (demo)

def rest(s):
 return s('rest')

def link(first, rest):
 def dispatch(msg):
 if msg == 'first':
 return first
 elif msg == 'rest':
 return rest
 return dispatch

def first(s):
 return s('first')

Implementing Linked Lists (v2) (demo)

def rest(s):
 return s('rest')

def link(first, rest):
 def dispatch(msg):
 if msg == 'brian':
 return first
 elif msg == 'marvin':
 return rest
 return dispatch

def first(s):
 return s('brian')

Implementing Linked Lists (v3)

def rest(s):
 return s('marvin')

Summary

• Linked lists are one implementation of the sequence
abstraction

• Linked lists are composed of two parts:
• first: the element in the link
• rest: the next link in the list (may be empty)

• Data abstraction means that the implementation details of
the first and rest selectors are unnecessary

• We can use functions to implement linked lists
• We can use lists to implement dictionaries
• Therefore, we can use functions to implement

dictionaries

