
CS 61A Lecture 11:
Trees

Tammy Nguyen (tammynguyen@berkeley.edu)
Thursday, 07/07

Announcements
● Quiz 2 grades were released Tuesday afternoon on Gradescope.

Regrade requests are open until tonight.
● Project 2 is due July 12.

○ Submit by July 12 to earn one extra credit point.
○ Run python3 ok --submit to check against hidden tests.
○ Check your submission at ok.cs61a.org.
○ Invite your partner (watch this video).

● Homework 4 is due July 7
● Quiz 4 will be released 9am on Monday, July 11 and due by 10am

on Tuesday, July 12.
● There will be no written quiz next Thursday, since the midterm is

that day.
● The 61A Potluck is this Friday, July 8. Join us in the Wozniak

Lounge from 5-8pm. Bring food and board games!

http://cs61a.org/proj/maps
http://cs61a.org/proj/maps
https://ok.cs61a.org/
https://youtu.be/3qx_RfKbvuQ
http://cs61a.org/hw/hw04
http://cs61a.org/hw/hw04

Agenda

● Linked list review
● Trees

○ Terminology
○ Abstract data type
○ Processing

■
■

○ Implementations

Linked List Review

● A linked list is a sequence of links.

first

rest

empty

● represents an empty linked list.

3 2 1

● Each contains a value, , and
a reference to the next link, .

Hierarchy

● Lists are useful for representing a single ordered
sequence of values.

● Data like a file system or family lineage are not linear.
● How can we represent data with hierarchical

relationships?

lab02.py

cs61a

lab hw

lab01

proj

lab02 maps

trees!

children

subtrees

Trees: Terminology

● A tree is an abstract data type that
represents hierarchical data.

● It is defined recursively: a tree is
made up of subtrees.

9

4 5

2

8

3 6

1

root

● The data are contained in nodes.

● The subtrees directly under the
root are the children of the tree.

● The node at the very top is the
root.

● Nodes without children are
called leaves.

leaf

leaf

leaf

leaf

entry

● The value inside the root is the
entry of the tree.

Trees: ADT

● Constructor:
○
○ : the data value to put in the root of the tree
○ : a list of trees immediately under the root,

defaults to an empty list

We define a tree recursively. Instead of specifying all of the
entries in a tree in the constructor, we specify the entry at
the root and a list of the children of the root (which have
their own entries and children…). 5

3 2

Trees: ADT

● Selectors:
○ : returns the entry in the root of
○ : returns a list containing the

children of the root of

5

3 2

Trees: ADT

● Convenience function:
○ : returns True if t is a leaf

5

3

4

2

Trees: ADT

7

1 4

8 2 93

256

Try it out!

This tree is bound to the name .
How can I use the selectors and

 to get the following entries?

Trees: ADT

7

1 4

8 2 93

056

Common mistakes
Our ADT requires that the tree is represented as the entry at the root
and the children of the root.

More specifically, the children are represented as a list of trees.

Here are some common mistakes when using the constructor and
selectors:

5

3 2

Passing in trees to the constructor:

Passing children in as entries instead of trees:

Treating the children of a tree as a single tree instead of as a list:

Trees: Processing

Some common tree operations:

Finding whether a specific entry is in a tree.
Summarizing the data in a tree.
Finding a path from the root to some entry.
Mapping a function onto each entry.
Finding the size or height of a tree.
Pruning a tree (getting rid of some nodes).
… and more!

right now!

today’s discussion.

Trees: Processing

● Remember, trees are defined recursively. A tree is composed of a
bunch of subtrees.

● This makes a tree very easy to process using recursion!
○ Base case(s):

■ simplest tree is a tree with no children, i.e. a leaf.
■ account for the root (?)

○ Recursive call: call the function on each of the tree’s
children.

A simplified general procedure:
1. Write a base case for a leaf (usually).
2. Process the root (which might be additional base case(s)).
3. Recurse on each of the children.
4. Combine/use the result of the recursive calls to solve the

problem.

Trees: contains_entry

Let’s write a function to find
whether a tree contains some
entry.

Step 1: Write a base case for a leaf.
A leaf only requires one check. If its
entry is the entry we are looking for,
return . Otherwise, return .

Step 2: Process the root.
If the entry at the root is the node we
are looking for, we can return .
We cannot return otherwise,
since it can still be in the children.

The first and third case can be
combined. It doesn’t matter if is a
leaf, if its is , return .

Trees: contains_entry

Let’s write a function to find
whether a tree contains some
entry.

Step 1: Write a base case for a leaf.
A leaf only requires one check. If its
entry is the entry we are looking for,
return . Otherwise, return .

Step 2: Process the root.
If the entry at the root is the node we
are looking for, we can return .
We cannot return otherwise,
since it can still be in the children.

The first and third case can be
combined. It doesn’t matter if is a
leaf, if its is , return .

Also, since we check for equality
in that case, we don’t need to
check for inequality in the second
case.

Trees: contains_entry

Step 3: Recurse on each of the
children.
Step 4: Combine/use results of
recursive calls.

will
return if contains and

 otherwise.
If any child contains , then the
whole tree contains , i.e. we can
return immediately.
If no child contains , then the
whole tree does not contain , as
we’ve already checked the root.

Trees: contains_entry

Step 3: Recurse on each of the
children.
Step 4: Combine/use results of
recursive calls.

will
return if contains and

 otherwise.
If any child contains , then the
whole tree contains , i.e. we can
return immediately.
If no child contains , then the
whole tree does not contain , as
we’ve already checked the root.

Trees: average_entry

Suppose we want to find the
average entry in an tree.

We cannot use the average entry of a
child to find the average entry of an
entire tree.
Instead, think about what information
you need about a tree to find its
average.
Write a helper function to find this
information, and then solve the
problem.

Trees: average_entry

We need to know the total sum of
all entries in the tree and the total
number of nodes in the tree.
Let’s fill in the helper function so it
returns that!
Step 1: Write a base case for a leaf.
A leaf sums to its entry, and it counts
as one node.

Step 2: Process the root.
Include the entry at the root in total sum
of entries, and add one to the count of
nodes.

Trees: average_entry

Step 3: Recurse on
each of the children.

Step 4: Combine/use
results of recursive calls.

will return
the total sum of entries
and the number of nodes
in .
We simply need to add
these amounts to the
running total and count.

Trees: average_entry

Step 3: Recurse on
each of the children.

Step 4: Combine/use
results of recursive calls.

will return
the total sum of entries
and the number of nodes
in .
We simply need to add
these amounts to the
running total and count.

Notice that the explicit base case isn’t
necessary! If is a leaf, the for loop will not
be entered and and will be
returned anyway.

Trees: average_entry

Step 3: Recurse on
each of the children.

Step 4: Combine/use
results of recursive calls.

will return
the total sum of entries
and the number of nodes
in .
We simply need to add
these amounts to the
running total and count.

Notice that the explicit base case isn’t
necessary! If is a leaf, the for loop will not
be entered and and 1 will be
returned anyway.

Trees: average_entry

Finally, we need to
actually call our
helper function and
solve our problem.

 returns
the total sum of the
entries and the
number of nodes in
.

We find the average
by dividing the sum
with the number of
nodes.

Trees: Implementation

Now that we’ve taken a look at how to use/process
trees, let’s cross the abstraction barrier!
Remember:
● The abstraction barrier stands between the user

and the implementation.
● The user does not need to know the underlying

implementation in order to use an ADT.
● There are multiple ways to implement a single

data abstraction.

Trees: Implementation
One possible implementation:

Trees: Implementation
Another possible implementation:

Summary
● A tree is a recursive abstract data type that represents hierarchical data.
● Constructor:

○
● Selectors:

○ : returns the entry in the root of
○ : returns a list containing the children of the root of

● Because trees are recursively defined, they are easy to process
recursively.
1. Write a base case for a leaf (usually).
2. Process the root (which might be additional base case(s)).
3. Recurse on each of the children.
4. Combine the result of the recursive calls to solve the problem.

● Like any other abstract data type, there are many possible
implementations of trees, and processing a tree does not require
knowing the specific implementation.

