
Marvin Zhang
07/11/2016

Lecture 12: Mutable Sequences

Announcements

http://cs61a.org/

Roadmap

• This short week (Mutability), the
goals are:
• To explore the power of values

that can mutate, or change

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Mutability

• Data abstraction allows us to think about compound values
as units, or objects

• But many compound values have state that can change over
time, i.e., they are mutable

• So far, we have treated all of our values as immutable —
we can’t change a value, we can only create a new one
• This is not a good analogy for objects in the real

world, e.g., people

• This can also make code less elegant and less efficient
• To solve these problems, we introduce mutability

👶 👩

(demo)

(demo)

Lists, Dictionaries, and Sets

Dictionary and Set Details

• Dictionaries and sets are unordered collections

• Keys in dictionaries and elements in sets:
• Can’t be mutable values, such as lists and dictionaries
• Must be unique, i.e., no duplicates

• If you want to associate multiple values with a key,
store them all in a sequence value, e.g.:

parity = {'odds': [1, 3, 5], 'evens': [2, 4, 6]}

Mutation through Function Calls

A function can change the value of any object in its scope
 
 
 
 
 
 
 
 
A function’s scope also includes parent frames

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

def mystery(s):
 s.pop()
 s.pop()

def mystery(s):
 s[2:] = []

or

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> another_mystery() # No arguments!
>>> len(four)
2

def another_mystery():
 four.pop()
 four.pop()

Interactive Diagram

http://pythontutor.com/composingprograms.html#code=def+mystery(s)%3A%0A++++s.pop()%0A++++s.pop()%0A%0Afour+%3D+%5B1,+2,+3,+4%5D%0Amystery(four)&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0

(demo)

Tuples and Strings are Immutable

Identity vs Equality

• Because mutable values can change, the notion of equality
is not as strong anymore
• Two immutable values are always equal or always unequal

to each other
• Two mutable values can be sometimes equal and sometimes

unequal to each other

• Each value also has an identity, which cannot change

• A list still has the same identity even if we change its
contents
• Conversely, two lists, even if they contain the same

elements, never have the same identity

Identity vs Equality

Identity

<exp0> is <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to 
the same object

Equality

<exp0> == <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to
equal values

Identical objects are always equal values

Interactive Diagram

(demo)

http://pythontutor.com/composingprograms.html#code=a+%3D+%5B10%5D%0Ab+%3D+%5B10%5D%0Aa.extend(%5B20,+30%5D%29%0Ac+%3D+b%0Ac.pop(%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0

Mutable Default Arguments

• A default argument value is part of a function value, and
not generated by a function call

>>> def f(s=[]):
... s.append(3)
... return len(s)
...
>>> f()
1
>>> f()
2
>>> f()
3

Interactive Diagram

http://pythontutor.com/composingprograms.html#code=def+f(s%3D%5B%5D)%3A%0A++++s.append(3)%0A++++return+len(s)%0A++++%0Af()%0Af()%0Af()&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0

Now with the power of mutation! (demo)

The Dictionary ADT, revisited

Summary

• Mutable values such as lists and dictionaries have state
and can be changed
• This can be useful in writing programs that are more

efficient and more understandable

• Immutable values cannot be changed after they are created
• This is simpler and safer: immutable values that are

equal (or unequal) will always be equal (or unequal)

• Knowing when and where to use both types of values is an
important part of being a good programmer!

