Lecture 12: Mutable Sequences

Marvin Zhang
0/7/11/2016

Announcements

http://cs61a.org/

Roadmap

Introduction
Functions

This short week (Mutability), the
Data goals are:

- To explore the power of values
[Mutabilityj that can mutate, or change
(@bjects)
(Interpretation)
(%aradigms]

(Applications)

Mutability (demo)

Data abstraction allows us to think about compound values
as units, or objects

But many compound values have state that can change over
time, 1i.e., they are mutable

So far, we have treated all of our values as immutable —
we can’t change a value, we can only create a new one

This 1i1s not a good analogy for objects in the real
world, e.g., people

@3 R

This can also make code less elegant and less efficient

To solve these problems, we introduce mutability

Lists, Dictionaries, and Sets

(demo)

Dictionary and Set Details

Dictionaries and sets are unordered collections
Keys 1n dictionaries and elements in sets:
Can’t be mutable values, such as lists and dictionaries

Must be unique, 1i.e., no duplicates

IfT you want to associate multiple values with a key,
store them all 1n a sequence value, e.g.:

parity = {'odds': [1, 3, 5], 'evens': [2, 4, 6]}

Mutation through Function Calls

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] gef mystery(s): or def mystery(s):
>>> len(four) s .pop () s[2:] = []
4 S.pop()

>>> mystery(four)
>>> len(four)
2

A function’s scope also includes parent frames

>>> four = [1, 2, 3, 4] def another mystery():
>>> len(four) four.pop ()
4 four.pop()

>>> another mystery() # No arguments!
>>> len(four)
2

Interactive Diagram

http://pythontutor.com/composingprograms.html#code=def+mystery(s)%3A%0A++++s.pop()%0A++++s.pop()%0A%0Afour+%3D+%5B1,+2,+3,+4%5D%0Amystery(four)&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0

Tuples and Strings are Immutable

(demo)

Identity vs Equality

- Because mutable values can change, the notion of equality
1s not as strong anymore

- Two immutable values are always equal or always unequal
to each other

« Two mutable values can be sometimes equal and sometimes
unequal to each other

« Each value also has an identity, which cannot change

« A list still has the same identity even if we change its
contents

« Conversely, two lists, even 1f they contain the same
elements, never have the same identity

Identity vs Equality (demo)

Identity

<exp0> is <expl>

evaluates to True if both <exp0> and <expl> evaluate to
the same object

Equality
<exp0> <expl>

evaluates to True if both <exp0> and <expl> evaluate to
equal values

Identical objects are always equal values

Interactive Diagram

http://pythontutor.com/composingprograms.html#code=a+%3D+%5B10%5D%0Ab+%3D+%5B10%5D%0Aa.extend(%5B20,+30%5D%29%0Ac+%3D+b%0Ac.pop(%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0

Mutable Default Arguments

« A default argument value is part of a function value, and
not generated by a function call

>>> def f(s=[]): viopet frane /"f“”‘: T(5) Iparent=Globall
e s.append(3) f ist
0 1 2
return len(s) fl: f [parent=Global] 3(13]|3
S
>>> f () Return
1 value
>>> f£() f2: f [parent=Global]
2 S
>>> f () Return
3 value

f3: f [parent=Global]

S

Return
value

Interactive Diagram

http://pythontutor.com/composingprograms.html#code=def+f(s%3D%5B%5D)%3A%0A++++s.append(3)%0A++++return+len(s)%0A++++%0Af()%0Af()%0Af()&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0

The Dictionary ADT, revisited

Now with the power of mutation! (demo)

Summary

Mutable values such as lists and dictionaries have state
and can be changed

This can be useful 1n writing programs that are more
efficient and more understandable

Immutable values cannot be changed after they are created

This is simpler and safer: immutable values that are
equal (or unequal) will always be equal (or unequal)

Knowing when and where to use both types of values 1is an
important part of being a good programmer!

