
Brian Hou
July 12, 2016

Lecture 13: Mutable Functions

Announcements

• Project 2 is due today (submit early and often)
• Look at your Hog submission for composition feedback

• Midterm is on 7/14 from 5-8 PM in 2050 VLSB
• TA-led review session during lecture tomorrow
• Office hours after 3 PM on Thursday and on Friday have

been rescheduled
• More information on Piazza

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This short week (Mutability), the
goals are:
• To explore the power of values

that can mutate, or change

Mutable Functions

Functions That Change

How can we model a bank account that has a balance of $100?

>>> withdraw = make_withdraw(100)
>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

Argument: 
amount to withdraw

Return value:
remaining balance

Second withdrawal
of the same amountDifferent return

value!

Where is this balance stored?

Persistent Local State in Environments

The parent frame
contains the balance,
the local state of the

withdraw function

Every call decreases
the same balance by

(a possibly
different) amount

All calls to the
same function have
the same parent

def make_withdraw(balance):
 """Return a withdraw function with
 a starting balance."""
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 return 'Insufficient funds'
 balance = balance - amount
 return balance
 return withdraw

Nonlocal Assignment (demo)

Declare the name balance
nonlocal at the top of
the function in which it

is re-assigned

Re-bind balance in the first
nonlocal frame in which it was

bound previously

Nonlocal Assignment

Nonlocal Statements

nonlocal <name>, <name>, ...

Effect: Future assignments to that name change its pre-
existing binding in the first nonlocal frame of the current
environment in which that name is bound.

Python Docs: an
"enclosing scope"From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-
existing bindings in an enclosing scope.

Names listed in a nonlocal statement must not collide with
pre-existing bindings in the local scope.

Current frame

http://www.python.org/dev/peps/pep-3104/
http://docs.python.org/release/3.1.3/reference/simple_stmts.html#the-nonlocal-statement

http://docs.python.org/release/3.1.3/reference/simple_stmts.html#nonlocal
http://docs.python.org/release/3.1.3/reference/simple_stmts.html#nonlocal
http://www.python.org/dev/peps/pep-3104/
http://docs.python.org/release/3.1.3/reference/simple_stmts.html#the-nonlocal-statement

Assignment Statements x = 2

Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name
"x" to value 2 in the first
frame of the current environment

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to value 2 in
the first frame of the current
environment

•nonlocal x
•"x" is bound in a
nonlocal frame

•"x" also bound locally

SyntaxError: name 'x' is
parameter and nonlocal

•nonlocal x
•"x" is not bound in a
nonlocal frame

SyntaxError: no binding for
nonlocal 'x' found

•nonlocal x
•"x" is bound in a
nonlocal frame

Re-bind "x" to 2 in the first
nonlocal frame of the current
environment in which "x" is
bound

def make_withdraw(balance):
 def withdraw(amount):
 # nonlocal balance
 if amount > balance:
 return 'Insufficient funds'
 balance = balance - amount
 return balance
 return withdraw

Python Particulars (demo)

Python pre-computes which frame contains each name before
executing the body of a function.

Within the body of a function, all instances of a name must
refer to the same frame.

Local assignment

Accounts

Mutable Sequences (demo)

def make_withdraw(balance):
 b = [balance]
 def withdraw(amount):
 if amount > b[0]:
 return 'Insufficient funds'
 b[0] = b[0] - amount
 return b[0]
 return withdraw

Mutable value
can change

Name-value binding cannot
change because there is no

nonlocal statement

Multiple Mutable Functions (demo)

>>> brian = make_withdraw(100)
>>> marvin = make_withdraw(100000)
>>> brian(10)
90

>>> marvin(10000)
90000

>>> brian(100)
'Insufficient funds'

>>> marvin(100)
89900

Break!

Referential Transparency

• Expressions are referentially transparent if substituting
an expression with its value does not change the meaning
of a program.

• Mutation operations violate the condition of referential
transparency because they do more than just return a
value; they change the environment

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

Mutating Linked Lists

Summary

• The nonlocal statement allows us to mutate name-value
bindings in a nonlocal frame

• Mutation is a powerful tool, but it also makes reasoning
about programs more difficult

• The truth is: we don't usually use nonlocal to build our
own objects with mutable state
• We'll see another way next week

• Good luck on the midterm!

