Lecture 13: Mutable Functions

Brian Hou
July 12, 2016

Announcements

+ Project 2 is due today (submit early and often)
Look at your Hog submission for composition feedback
Midterm is on 7/14 from 5-8 PM in 2050 VLSB
TA-led review session during lecture tomorrow

+ 0ffice hours after 3 PM on Thursday and on Friday have
been rescheduled

More information on Piazza

Roadmap

Introduction

This short week (Mutability), the
goals are:

+ To explore the power of values
that can mutate, or change

Interpretation
Applications

Mutable Functions

Functions That Change

How can we model a bank account that has a balance of $1007?

>>> withdraw = make_withdraw(100)

>>> withdraw(25)
Return value: 75
remaining balance
- >>> withdraw(25)< second withdrawal
lefecgqﬁefeturn 50 of the same amount

>>> withdraw(60)
'Insufficient funds'

Argument:
amount to withdraw

>>> withdraw(15)
35

Where is this balance stored?

same function have

Persistent Local State in Environments

Global frame func make_withdraw(balance) [p=G]

make_withdraw .
func withdraw(amount) [p=f1]
withdraw S

The parent frame
contains the balance,
balance |50 the local state of the
withdraw withdraw function

Return
value

f1: make_withdraw [p=G]

All calls to the o wndran (e Every call decreases
et the same balance by
vl |75 (a possibly

different) amount

amount |25

the same parent

f3: withdraw [p=f1]

amount 25

Return |gq
value

Nonlocal Assignment (demo)

def make_withdraw(balance):

Return a withdraw function with

a starting balance. Declare the name balance

nonlocal at the top of
nonlocal balance the function in which it
is re-assigned

def withdraw(amount):

if amount > balance:

Nonlocal Assignment

return 'Insufficient funds'
balance = balance - amount
return balance

return withdraw Re-bind balance in the first

nonlocal frame in which it was
bound previously

Nonlocal Statements

nonlocal <name>, <name=,

Effect: Future assignment
existing binding in the
environment in which that name is bound.

ge its pre-
‘of the current

Python Docs: an
From the Python 3 language reference: "enclosing scope”

Names listed in a nonlocal statement must refer to pre-
existing bindings in an enclosing scope.

Names listed in a nonlocal stat
pre-existing bindings in the!

t.

.t not collide with

http://docs.python.org/release/3.1.3/reference/simple stmts.html#the-nonlocal-statement
http://www. python.arg/dev/peps/pep-3104/

Assignment Statements x =2

Status Effect

Create a new binding from name
"x" to value 2 in the first
frame of the current environment

*No nonlocal statement
*"x" is not bound locally

Re-bind name "x" to value 2 in
the first frame of the current
environment

*No nonlocal statement

*"x" is bound locally

Re-bind "x" to 2 in the first
nonlocal frame of the current
environment in which "x" is
bound

*nonlocal x
o

*"x" is bound in a
nonlocal frame

*nonlocal x

SyntaxError: no binding for

ot i .
x" is not bound in a nonlocal 'x' found
nonlocal frame

enonlocal x

*"x" is bound in a SyntaxError: name 'x' is
nonlocal frame parameter and nonlocal

«"x" also bound locally

Python Particulars (demo)

def make_withdraw(balance):
def withdraw(amount):
nonlocal balance
if amount > balance:
return 'Insufficient fundg'

i balance = balance - amount}<ﬁ Local assignment
‘return balance

return withdraw

UnboundLocalError: local variable 'balance' referenced before assignment

Python pre-computes which frame contains each name before
executing the body of a function.

Within the body of a function, all instances of a name must
refer to the same frame.

Accounts

Mutable Sequences (demo)

Global frame func make_withdraw(balance) [p=G]

make_withdraw

withdraw

f1: make_withdraw [p=G]

Name-value binding cannot
change because there is no
nonlocal statement

b

Return
value

def make withdraw(balance):
f2: withdraw [p=f1] b = [balance]
def withdraw(amount):

Multiple Mutable Functions (demo)

>>> brian = make_withdraw(100)

>>> marvin = make_withdraw(100000)
>>> brian(10)

90

>>> marvin(10000)
90000

>>> brian(100)
'Insufficient funds'

amount 25 >>> marvin(100)
- if amount > b[0]: o 89900
o [return 'Insufficient funds'
b[0] = b[0] amount
return b[0]
return withdraw
Referential Transparency
- Expressions are referentially transparent if substituting
an expression with its value does not change the meaning
of a program.
Break!

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5)) \

+ Mutation operations violate the condition of referential
transparency because they do more than just return a
value; they change the environment

Mutating Linked Lists

Summary

* The nonlocal statement allows us to mutate name-value
bindings in a nonlocal frame

« Mutation is a powerful tool, but it also makes reasoning
about programs more difficult

+ The truth is: we don't usually use nonlocal to build our
own objects with mutable state

* We'll see another way next week

* Good luck on the midterm!

