
Midterm
Review

CS61A Summer 2016

Katya Stukalova
Jerome Baek

Announcements
● Time: 5:00PM to 8:00PM, Thursday, 7/14

● Place: 2050 VLSB (right here!)

● Check https://piazza.com/class/ipkfex1ne3p56y?cid=773

● You can bring an 8.5”x 11” cheat sheet, front and back

● These slides will be posted on Piazza

https://piazza.com/class/ipkfex1ne3p56y?cid=773

The Plan...

Pitfalls

Topics

● Environment diagrams

● While loops and for loops

● Higher order functions

● Lambda functions

● Recursion and tree
recursion

● Orders of growth

● Lists & sequences

● Data abstraction

● Linked lists

● Trees

Environment Diagrams

Name of frame should be intrinsic name
of function
def f():

…
def g():

…
f = g

f()

What is the name of the frame created by the last line? g

Lambda functions are defined when...

def f(g):

y = 2

return g(2)

y = 1

print(f(lambda x: x + y))

What number is printed?

What is the parent of the lambda function?

3

Global

Environment Diagram Question
def marvin(brain):

cs61a = midterm+2

return cs61a + brain(midterm+1)

def tammy(marvin):

marvin, midterm = marvin+2, marvin+1

return midterm // cs61a

midterm, cs61a = 3, 2

marvin(tammy)

Python Tutor

http://pythontutor.com/composingprograms.html#code=def+marvin(brain%29%3A+%0A++++cs61a+%3D+midterm%2B2+%0A++++return+cs61a+%2B+brain(midterm%2B1%29+%0Adef+tammy(marvin%29%3A+%0A++++marvin,+midterm+%3D+marvin%2B2,+marvin%2B1+%0A++++return+midterm+//+cs61a+%0A%0Amidterm,+cs61a+%3D+3,+2+%0Amarvin(tammy%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0
http://pythontutor.com/composingprograms.html#code=def+marvin(brain%29%3A+%0A++++cs61a+%3D+midterm%2B2+%0A++++return+cs61a+%2B+brain(midterm%2B1%29+%0Adef+tammy(marvin%29%3A+%0A++++marvin,+midterm+%3D+marvin%2B2,+marvin%2B1+%0A++++return+midterm+//+cs61a+%0A%0Amidterm,+cs61a+%3D+3,+2+%0Amarvin(tammy%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0

Environment Diagram Pitfalls
1. Name of frame should be intrinsic name of function

2. Lambda functions are defined where they are evaluated

3. Parent frame of a function never changes once you write it down

4. Don't conflate: function name vs. function call

5. Calling a function

a. Evaluate the operator (usually a lookup)

b. Evaluate the operands

c. Apply the operator on the operands (this is where you actually call the function
and make a new frame)

Lists and sequences

List and Sequences Pitfalls

1. Whenever you see a negative number, like -n, just replace it
with len(lst) - n

lst[-3] == lst[len(lst)-3]

lst[-2:3] == lst[len(lst)-2:3]

2. In list slicing, if you go out of bounds, you DON'T error, you
just return as much as you can

3. List slicing ALWAYS returns a list

The function deep_len takes a deep list as input and returns the deep

length of the list. Fill in the blanks.
def deep_len(lst):

if not lst:

return ______________

elif type(lst[0]) == list:

return _______________

else:

return ________________

"""

>>> deep_len([1, 2, 3]) # normal list

3

>>> x = [1, [2, 3], 4] # deep list

>>> deep_len(x)

4

>>> x = [[1, [1, 1]], 1, [1, 1]]

>>> deep_len(x)

6

"""

0

deep_len(lst[0]) +

deep_len(lst[1:])

1 + deep_len(lst[1:])

Deep Length

Higher Order Functions

How are the following pieces of code
different?
What would Python display for each?

Draw env diagrams to see what’s different!

PythonTutor

http://pythontutor.com/composingprograms.html#code=t+%3D+%22surprise%22%0A%0Adef+outer1(t%29%3A%0A++++def+inner1(%29%3A%0A++++++++print(t%29%0A++++return+inner1%0A+++%0Aouter1(%22boo%22%29(%29+%0A%0Adef+inner2(%29%3A%0A++++print(t%29%0A++++%0Adef+outer2(t%29%3A%0A++++return+inner2%0A++++%0Aouter2(%22boo%22%29(%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0
http://pythontutor.com/composingprograms.html#code=t+%3D+%22surprise%22%0A%0Adef+outer1(t%29%3A%0A++++def+inner1(%29%3A%0A++++++++print(t%29%0A++++return+inner1%0A+++%0Aouter1(%22boo%22%29(%29+%0A%0Adef+inner2(%29%3A%0A++++print(t%29%0A++++%0Adef+outer2(t%29%3A%0A++++return+inner2%0A++++%0Aouter2(%22boo%22%29(%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0

Fill in the blanks so that the doctests
pass.

Fun Multiply
 “””

 >>> def func_a(num):

 ... return num + 1

 >>> func_b1 = fun_mult(func_a, 3)

 >>> func_b1(2)

 4

 >>> func_b2 = fun_mult(func_a, -2)

 >>> func_b2(-3)

 >>> func_b3 = fun_mult(func_a, -1)

 >>> func_b3(4)

 >>> func_b4 = fun_mult(func_a, 0)

 >>> func_b4(3)

 6

 >>> func_b5 = fun_mult(func_a, 1)

 >>> func_b5(4)

 24

 """

def fun_mult(func_a, start):
def func_b(stop):

i = __________
product = 1
if start < 0:

return __________
if start > stop:

return ______________
while i < stop:

product = ___________________
i += 1

return ___________
return func_b

start

None

func_a(start)

product * func_a(i)

product

Higher Order Functions Pitfalls

1. Function name vs. function call

2. Parent of the function is the frame in which the
function was defined

3. Don't be freaked out by things like f(3)(2)(6)

Recursion and Tree Recursion

Recursive Remove
def remove (n , digit):

"""

Return a number that is identical to n, but with all instances

of digit removed. Assume that DIGIT is a positive integer less

than 10.

“””
if n == 0:

return 0

if n % 10 == digit:

return remove(n // 10, digit)

else:

return n % 10 + 10 * remove(n // 10, digit)

FooBar
Write the function foobar that behaves as follows:

>>> foobar(0)

"foo"

>>> foobar(1)

"foobar"

>>> foobar(2)

"foobarbar"

>>> foobar(3)

"foobarbarfoo"

>>> foobar(4)

"foobarbarfoobar"

>>> foobar(14)

"foobarbarfoobarbarfoobarbarfoobarbarfoobarbar"

def foobar(n):

 if n == 0:

 return "foo"

 elif n % 3 == 0:

 return foobar(n-1) + "foo"

 else:

 return foobar(n-1) + "bar"

Recursion Pitfalls

1. PLEASE consider the TYPE of input and output to the function

2. A recursive function must ALWAYS return a value of the same type!!!

a. BAD: returning first(link) when you should return a linked list

3. Take the leap of faith! Be confident - thought is recursive. Assume your

solution is correct and you'll be correct. Assume your solution fails and

you will fail.

4. The input to the recursive call MUST be closer to the base case

a. Otherwise, you get stuck in recursive calls forever!

Write a function that takes as input a
number n and a list of numbers lst and
returns True if we can find a subsequence of
lst that sums up to n
>>> addup(10, [1, 2, 3, 4, 5])

True

>>> addup(8, [1, 2, 3, 4, 5])

True

>>> addup(-1, [1, 2, 3, 4, 5])

False

>>> addup(100, [1, 2, 3, 4, 5])

False

Addup
def addup(n, lst):

if n == 0:

return True

if lst == []:

 return False

else:

first, rest = lst[0], lst[1:]

return addup(n-first, rest) or \

F addup(n, rest)

Tree Recursion Tips
1. LOOK AT the TYPE of input and output to the function

a. BAD: calling f(children(tree)) when f takes in a tree

2. A recursive function must ALWAYS return a value of the
same type!!!

3. Think of the logic of the function, think of what the function
should return, take the leap of faith!

Orders of growth

Orders of Growth Tips

1. There is no sure and fast way to determine

the order of growth of a function.

2. Read the function definition carefully and

make sure you understand exactly what the

function is doing.

Find the Orders of Growth

def fun(x):

 for i in range(x):

 for j in range(x * x):

 if j == 4:

 return -1

 print(“fun!”)

def f(n):
if not not not False:

return

else:
return f(n - 1)

def belgian_waffle(n):

i = 0

sum = 0

while i < n:

for j in range (n**2):

sum +=1

i += 1

return sum

Constant!

n^3

Constant!

Linked Lists

Count
Define a function count which takes in a linked list, lnk, and a list of

numbers, nums, and returns the number of values in nums that appear in lnk

Assume that all entries in nums are distinct.

 [Hint: practice your list comprehensions! :)]

def count(lnk, nums):

if lnk == empty:

return 0

if first(lnk) in nums:

return 1 + count(rest(lnk),\

F [x for x in nums if x != first(lnk)])

return count(rest(lnk), nums)

Write a function that returns the kth to last element of a linked
list.
def kth_to_last(l):

"""
>>> lst = link(1, link(2, link(3)))
>>> kth_to_last(lst, 0)
3
>>> kth_to_last(lst, 1)
2
>>> print(kth_to_last(lst, 5))
None
"""

Kth to Last.

 1 2 3 X k = 1

Here’s an approach

Recurse until you hit the empty list

When you return back
to the front of the list
through your recursive
calls, decrement k by 1

Once k is 0, you must
return the first
element of the current
list

Kth to Last.
def kth_last(lst, k):

def unwind_rewind(lst):

if lst == empty:
return k, None

previous_k, kth_element = unwind_rewind(rest(lst))

if previous_k == 0:

return previous_k - 1, first(lst)

else:
return previous_k - 1, kth_element

return unwind_rewind(lst)[1]

Trees

Tree Tips

1. Children of a tree is a list of trees

2. Recursive calls go vertically in the tree,
for loops go horizontally

Find and Replace
Implement the function find_and_replace which takes
in a tree t, and two values, old and new. The function
returns a tree that is identical to the original, but with
all instances of old replaced with new.

def find_and_replace(t, old, new):

kept_children = []
for c in children(t):

kept_children += [find_and_replace(c, old, new)]
if entry(t) == old:

return tree(new, kept_children)
return tree(entry(t), kept_children)

Binary Tree
Write a function that takes in a tree, t, and returns True if every node has at most
two children and False otherwise.

def is_binary_tree(t):
if len(children(t)) > 2:

return False
final_result = True
for c in children(c):

final_result = final_result and is_binary_tree(c)
return final_result

Thanks for
coming!

Good luck on the midterm!

