
Brian Hou
July 18, 2016

Lecture 15: Object-Oriented Programming

Announcements

• Homework 6 is due 7/20 at 11:59pm
• Project 3 is due 7/26 at 11:59pm

• Earn 1 EC point for completing it by 7/25

• Quiz 5 on 7/21 at the beginning of lecture
• May cover mutability, object-oriented programming

• Midterm grades are released, regrade requests due tonight

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Objects), the goals are:

• To learn the paradigm of 
object-oriented programming

• To study applications of, and
problems that be solved using, OOP

Previously, on CS 61A...

• We defined our own data types!

• Rational numbers, dictionaries, linked lists, trees

• Data abstraction helped us manage the complexity of using these
new data types

• Separated their usage from their underlying implementation

• We defined operations for these data types:

• len_link, getitem_link, contains_link, map_link...

• Problems?

• Abstraction violations

• Program organization

Object-Oriented Programming

Object-Oriented Programming

• A new programming paradigm: think in terms of objects

• Objects have attributes and can take actions

• Objects can interact with each other

• Computations are the result of interactions between objects

• Every object is an instance of a class

• A class is a type or a category of objects (often capitalized)

• A class provides a blueprint for its objects

Classes

Brian is a Humaninstance class

instance
attributes

Brian has a name and an age

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder

'Brian'

>>> a.deposit(15)

15
>>> a.balance
15
>>> a.withdraw(10)
5

>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

Idea: All bank accounts should
have withdraw and deposit
behaviors that all work in the
same way

Better idea: All bank accounts
share a withdraw method and a
deposit method

The Class Statement

• When executing a class statement, Python creates a new frame
and executes the statements in <suite> (typically assignment
and def statements)

• Once all the statements in <suite> have been executed, a new
class with those bindings is created and bound to <name> in the
first frame of the original environment

class <name>:
 <suite>

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder

'Brian'

When a class is called:
• A new instance of that class is created

• The special __init__ method of the class is called with the
new instance as its first argument (named self), along with
any additional arguments provided in the call expression

class Account:
 def __init__(self, account_holder):

 self.balance = 0
 self.holder = account_holder

__init__ is called a
constructor An account instance

balance: 0 holder: 'Brian'

Object Identity

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Brian')
>>> b = Account('Marvin')
>>> a.holder
'Brian'
>>> b.holder

'Marvin'
>>> a is b
False

Every call to Account creates
a new Account instance.

Binding an object to a new name using assignment does not create
a new object:

>>> c = a
>>> c is a
True

Methods

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):

 self.balance = self.balance + amount
 return self.balance

 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'

 self.balance = self.balance - amount
 return self.balance

self should always be bound to
an instance of the Account class

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount

 return self.balance

(demo)

Dot notation automatically passes the first argument to a method

>>> a1 = Account('Brian')

>>> a1.deposit(100)
100

>>> a2 = Account('Brian')

>>> Account.deposit(a2, 100)
100

Bound to
self

Invoked with
one argument

Invoked with
two arguments

Attributes

Dot Notation

• Dot notation accesses attributes of an instance or its class

• <expr> can be any valid Python expression

• Look up the value of <name> in the object <expr>

<expr>.<name>

Call expression

a.deposit(100)

Dot expression

Accessing Attributes

• The built-in getattr function does the same thing as dot
expressions

• a.balance is equivalent to getattr(a, 'balance')

• a.deposit is equivalent to getattr(a, 'deposit')

• a.deposit(100) is equivalent to getattr(a, 'deposit')(100)

• The built-in hasattr function returns whether an object has an
attribute with that name

• Accessing an attribute in an object may return:

• One of its instance attributes, or

• One of the attributes of its class

(demo)

<expr>.<name>

Methods and Functions

• Python distinguishes between:

• Functions, which we have been creating since the beginning
of the course

• Bound methods, which combines a function and the instance on
which that function will be invoked

>>> a = Account('Brian')

>>> type(Account.deposit)
<class 'function'>
>>> type(a.deposit)
<class 'method'>
>>> Account.deposit(a, 100)
100

>>> a.deposit(100)
200

Function: all arguments
are within parentheses

Method: one argument (self) before the dot
and other arguments within parentheses

(demo)

Class Attributes

• Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance

>>> a = Account('Brian')
>>> b = Account('Marvin')
>>> a.interest
0.02

>>> b.interest
0.02

The interest attribute is not part of the
instance; it's part of the class!

class Account:
 interest = 0.02
 def __init__(self, account_holder):

 self.balance = 0
 self.holder = account_holder

(demo) Evaluating Dot Expressions

• Evaluate <expr>, which yields the object of the dot expression

• <name> is matched against the instance attributes of that
object; if an attribute with that name exists, its value is
returned

• If not, <name> is looked up in the class, which yields a class
attribute value

• That value is returned unless it is a function, in which case a
bound method is returned instead

<expr>.<name>

Break! Inheritance

Inheritance

• Inheritance is a technique for relating classes together

• Common use: a specialized class inherits from a more general
class

class <new class>(<base class>):  
 ...

• The new class shares attributes with the base class (inherits
attributes of its base class)

• The new class overrides certain inherited attributes

• Implementing the new class is now as simple as specifying how
it’s different from the base class

Inheritance Example

• Bank accounts have:

• an account holder

• a balance

• an interest rate of 2%

• You can:

• deposit to an account

• withdraw from an account

class Account:
 """A bank account."""  
 ...

class CheckingAccount(Account):
 """A checking account."""  
 ...

• Checking accounts have:

• an account holder

• a balance

• an interest rate of 1%

• a withdrawal fee of $1

• You can:

• deposit to an account

• withdraw from an account
(but there's a fee!)

Inheritance Example

• Bank accounts have:

• an account holder

• a balance

• an interest rate of 2%

• You can:

• deposit to an account

• withdraw from an account

class Account:
 """A bank account."""  

 ...

class CheckingAccount(Account):
 """A checking account."""  

 ...

• Checking accounts have:

• an account holder

• a balance

• an interest rate of 1%

• a withdrawal fee of $1

• You can:

• deposit to an account

• withdraw from an account
(but there's a fee!)

(demo) Attribute Lookup on Classes (demo)

>>> ch = CheckingAccount('Marvin') # Account.__init__

>>> ch.interest

Found in CheckingAccount

0.01
>>> ch.deposit(20) # Found in Account

20

>>> ch.withdraw(5)

Found in CheckingAccount

14

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Designing for Inheritance

• Don't repeat yourself; use existing implementations

• Attributes that have been overridden are still accessible via
class objects

• Look up attributes on instances whenever possible

class CheckingAccount(Account):
 withdraw_fee = 1

 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Attribute look-up
on base class

Preferred to
CheckingAccount.withdraw_fee

to allow for further
specialization

Summary

• Object-oriented programming is another way (paradigm) to
organize and reason about programs

• Computations are the result of interactions between objects

• The Python class statement allows us to create user-defined
data types that can be used just like built-in data types

• Inheritance is a powerful tool for further extending these
user-defined data types

