
Brian Hou
July 18, 2016

Lecture 15: Object-Oriented Programming

Announcements

Announcements

• Homework 6 is due 7/20 at 11:59pm

Announcements

• Homework 6 is due 7/20 at 11:59pm

• Project 3 is due 7/26 at 11:59pm

Announcements

• Homework 6 is due 7/20 at 11:59pm

• Project 3 is due 7/26 at 11:59pm

• Earn 1 EC point for completing it by 7/25

Announcements

• Homework 6 is due 7/20 at 11:59pm

• Project 3 is due 7/26 at 11:59pm

• Earn 1 EC point for completing it by 7/25

• Quiz 5 on 7/21 at the beginning of lecture

Announcements

• Homework 6 is due 7/20 at 11:59pm

• Project 3 is due 7/26 at 11:59pm

• Earn 1 EC point for completing it by 7/25

• Quiz 5 on 7/21 at the beginning of lecture

• May cover mutability, object-oriented programming

Announcements

• Homework 6 is due 7/20 at 11:59pm

• Project 3 is due 7/26 at 11:59pm

• Earn 1 EC point for completing it by 7/25

• Quiz 5 on 7/21 at the beginning of lecture

• May cover mutability, object-oriented programming

• Midterm grades are released, regrade requests due tonight

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Objects), the goals are:

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Objects), the goals are:
• To learn the paradigm of 

object-oriented programming

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Objects), the goals are:
• To learn the paradigm of 

object-oriented programming

• To study applications of, and
problems that be solved using, OOP

Previously, on CS 61A...

Previously, on CS 61A...

• We defined our own data types!

Previously, on CS 61A...

• We defined our own data types!

• Rational numbers, dictionaries, linked lists, trees

Previously, on CS 61A...

• We defined our own data types!

• Rational numbers, dictionaries, linked lists, trees

• Data abstraction helped us manage the complexity of using these
new data types

Previously, on CS 61A...

• We defined our own data types!

• Rational numbers, dictionaries, linked lists, trees

• Data abstraction helped us manage the complexity of using these
new data types

• Separated their usage from their underlying implementation

Previously, on CS 61A...

• We defined our own data types!

• Rational numbers, dictionaries, linked lists, trees

• Data abstraction helped us manage the complexity of using these
new data types

• Separated their usage from their underlying implementation

• We defined operations for these data types:

Previously, on CS 61A...

• We defined our own data types!

• Rational numbers, dictionaries, linked lists, trees

• Data abstraction helped us manage the complexity of using these
new data types

• Separated their usage from their underlying implementation

• We defined operations for these data types:

• len_link, getitem_link, contains_link, map_link...

Previously, on CS 61A...

• We defined our own data types!

• Rational numbers, dictionaries, linked lists, trees

• Data abstraction helped us manage the complexity of using these
new data types

• Separated their usage from their underlying implementation

• We defined operations for these data types:

• len_link, getitem_link, contains_link, map_link...

• Problems?

Previously, on CS 61A...

• We defined our own data types!

• Rational numbers, dictionaries, linked lists, trees

• Data abstraction helped us manage the complexity of using these
new data types

• Separated their usage from their underlying implementation

• We defined operations for these data types:

• len_link, getitem_link, contains_link, map_link...

• Problems?

• Abstraction violations

Previously, on CS 61A...

• We defined our own data types!

• Rational numbers, dictionaries, linked lists, trees

• Data abstraction helped us manage the complexity of using these
new data types

• Separated their usage from their underlying implementation

• We defined operations for these data types:

• len_link, getitem_link, contains_link, map_link...

• Problems?

• Abstraction violations

• Program organization

Object-Oriented Programming

Object-Oriented Programming

Object-Oriented Programming

• A new programming paradigm: think in terms of objects

Object-Oriented Programming

• A new programming paradigm: think in terms of objects

• Objects have attributes and can take actions

Object-Oriented Programming

• A new programming paradigm: think in terms of objects

• Objects have attributes and can take actions

• Objects can interact with each other

Object-Oriented Programming

• A new programming paradigm: think in terms of objects

• Objects have attributes and can take actions

• Objects can interact with each other

• Computations are the result of interactions between objects

Classes

• Every object is an instance of a class

Classes

• Every object is an instance of a class

• A class is a type or a category of objects (often capitalized)

Classes

• Every object is an instance of a class

• A class is a type or a category of objects (often capitalized)

• A class provides a blueprint for its objects

Classes

• Every object is an instance of a class

• A class is a type or a category of objects (often capitalized)

• A class provides a blueprint for its objects

Classes

Brian is a Human

• Every object is an instance of a class

• A class is a type or a category of objects (often capitalized)

• A class provides a blueprint for its objects

Classes

Brian is a Human class

• Every object is an instance of a class

• A class is a type or a category of objects (often capitalized)

• A class provides a blueprint for its objects

Classes

Brian is a Humaninstance class

• Every object is an instance of a class

• A class is a type or a category of objects (often capitalized)

• A class provides a blueprint for its objects

Classes

Brian is a Humaninstance class

Brian has a name and an age

• Every object is an instance of a class

• A class is a type or a category of objects (often capitalized)

• A class provides a blueprint for its objects

Classes

Brian is a Humaninstance class

instance
attributes

Brian has a name and an age

The Account Class

The Account Class

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

The Account Class

>>> a = Account('Brian')Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

The Account Class

>>> a = Account('Brian')
>>> a.balance

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

The Account Class

>>> a = Account('Brian')
>>> a.balance
0

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

Idea: All bank accounts should
have withdraw and deposit
behaviors that all work in the
same way

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

Idea: All bank accounts should
have withdraw and deposit
behaviors that all work in the
same way

Better idea: All bank accounts
share a withdraw method and a
deposit method

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

>>> a.deposit(15)

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

Idea: All bank accounts should
have withdraw and deposit
behaviors that all work in the
same way

Better idea: All bank accounts
share a withdraw method and a
deposit method

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

>>> a.deposit(15)
15

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

Idea: All bank accounts should
have withdraw and deposit
behaviors that all work in the
same way

Better idea: All bank accounts
share a withdraw method and a
deposit method

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

>>> a.deposit(15)
15
>>> a.balance

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

Idea: All bank accounts should
have withdraw and deposit
behaviors that all work in the
same way

Better idea: All bank accounts
share a withdraw method and a
deposit method

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

>>> a.deposit(15)
15
>>> a.balance
15

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

Idea: All bank accounts should
have withdraw and deposit
behaviors that all work in the
same way

Better idea: All bank accounts
share a withdraw method and a
deposit method

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

>>> a.deposit(15)
15
>>> a.balance
15
>>> a.withdraw(10)

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

Idea: All bank accounts should
have withdraw and deposit
behaviors that all work in the
same way

Better idea: All bank accounts
share a withdraw method and a
deposit method

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

>>> a.deposit(15)
15
>>> a.balance
15
>>> a.withdraw(10)
5

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

Idea: All bank accounts should
have withdraw and deposit
behaviors that all work in the
same way

Better idea: All bank accounts
share a withdraw method and a
deposit method

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

>>> a.deposit(15)
15
>>> a.balance
15
>>> a.withdraw(10)
5
>>> a.balance

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

Idea: All bank accounts should
have withdraw and deposit
behaviors that all work in the
same way

Better idea: All bank accounts
share a withdraw method and a
deposit method

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

>>> a.deposit(15)
15
>>> a.balance
15
>>> a.withdraw(10)
5
>>> a.balance
5

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

Idea: All bank accounts should
have withdraw and deposit
behaviors that all work in the
same way

Better idea: All bank accounts
share a withdraw method and a
deposit method

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

>>> a.deposit(15)
15
>>> a.balance
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

Idea: All bank accounts should
have withdraw and deposit
behaviors that all work in the
same way

Better idea: All bank accounts
share a withdraw method and a
deposit method

The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

>>> a.deposit(15)
15
>>> a.balance
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance

Idea: All bank accounts should
have withdraw and deposit
behaviors that all work in the
same way

Better idea: All bank accounts
share a withdraw method and a
deposit method

The Class Statement

The Class Statement

class <name>:
 <suite>

The Class Statement

• When executing a class statement, Python creates a new frame
and executes the statements in <suite> (typically assignment
and def statements)

class <name>:
 <suite>

The Class Statement

• When executing a class statement, Python creates a new frame
and executes the statements in <suite> (typically assignment
and def statements)

• Once all the statements in <suite> have been executed, a new
class with those bindings is created and bound to <name> in the
first frame of the original environment

class <name>:
 <suite>

Constructing Objects

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')

When a class is called:

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')

When a class is called:

• A new instance of that class is created

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')

When a class is called:

• A new instance of that class is created

An account instance

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')

When a class is called:

• A new instance of that class is created

• The special __init__ method of the class is called with the
new instance as its first argument (named self), along with
any additional arguments provided in the call expression

An account instance

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')

When a class is called:

• A new instance of that class is created

• The special __init__ method of the class is called with the
new instance as its first argument (named self), along with
any additional arguments provided in the call expression

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

An account instance

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')

When a class is called:

• A new instance of that class is created

• The special __init__ method of the class is called with the
new instance as its first argument (named self), along with
any additional arguments provided in the call expression

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

An account instance

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')

When a class is called:

• A new instance of that class is created

• The special __init__ method of the class is called with the
new instance as its first argument (named self), along with
any additional arguments provided in the call expression

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

An account instance

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')

When a class is called:

• A new instance of that class is created

• The special __init__ method of the class is called with the
new instance as its first argument (named self), along with
any additional arguments provided in the call expression

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

An account instance

balance: 0

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')

When a class is called:

• A new instance of that class is created

• The special __init__ method of the class is called with the
new instance as its first argument (named self), along with
any additional arguments provided in the call expression

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

An account instance

balance: 0 holder: 'Brian'

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')

When a class is called:

• A new instance of that class is created

• The special __init__ method of the class is called with the
new instance as its first argument (named self), along with
any additional arguments provided in the call expression

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

__init__ is called a
constructor An account instance

balance: 0 holder: 'Brian'

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')
>>> a.balance
0

When a class is called:

• A new instance of that class is created

• The special __init__ method of the class is called with the
new instance as its first argument (named self), along with
any additional arguments provided in the call expression

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

__init__ is called a
constructor An account instance

balance: 0 holder: 'Brian'

Constructing Objects

Idea: All bank accounts have a
balance and an account holder

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

When a class is called:

• A new instance of that class is created

• The special __init__ method of the class is called with the
new instance as its first argument (named self), along with
any additional arguments provided in the call expression

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

__init__ is called a
constructor An account instance

balance: 0 holder: 'Brian'

Object Identity

Object Identity

Every object that is an instance of a user-defined class has a
unique identity:

Object Identity

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Brian')
>>> b = Account('Marvin')

Object Identity

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Brian')
>>> b = Account('Marvin')
>>> a.holder
'Brian'

Object Identity

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Brian')
>>> b = Account('Marvin')
>>> a.holder
'Brian'
>>> b.holder
'Marvin'

Object Identity

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Brian')
>>> b = Account('Marvin')
>>> a.holder
'Brian'
>>> b.holder
'Marvin'
>>> a is b
False

Object Identity

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Brian')
>>> b = Account('Marvin')
>>> a.holder
'Brian'
>>> b.holder
'Marvin'
>>> a is b
False

Every call to Account creates
a new Account instance.

Object Identity

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Brian')
>>> b = Account('Marvin')
>>> a.holder
'Brian'
>>> b.holder
'Marvin'
>>> a is b
False

Every call to Account creates
a new Account instance.

Binding an object to a new name using assignment does not create
a new object:

Object Identity

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Brian')
>>> b = Account('Marvin')
>>> a.holder
'Brian'
>>> b.holder
'Marvin'
>>> a is b
False

Every call to Account creates
a new Account instance.

Binding an object to a new name using assignment does not create
a new object:

>>> c = a
>>> c is a
True

Methods

Methods

Methods

• Methods are functions defined within a class statement

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:
 def __init__(self, account_holder):

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:
 def __init__(self, account_holder):
 self.balance = 0

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

 def withdraw(self, amount):

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

 def withdraw(self, amount):
 if amount > self.balance:

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but
their names are bound as attributes of the class

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

self should always be bound to
an instance of the Account class

Invoking Methods

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

class Account:

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

class Account:
 ...

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

(demo)

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

(demo)

Dot notation automatically passes the first argument to a method

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

(demo)

Dot notation automatically passes the first argument to a method

>>> a1 = Account('Brian')
>>> a1.deposit(100)
100

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

(demo)

Dot notation automatically passes the first argument to a method

>>> a1 = Account('Brian')
>>> a1.deposit(100)
100

>>> a2 = Account('Brian')
>>> Account.deposit(a2, 100)
100

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

(demo)

Dot notation automatically passes the first argument to a method

>>> a1 = Account('Brian')
>>> a1.deposit(100)
100

>>> a2 = Account('Brian')
>>> Account.deposit(a2, 100)
100

Bound to
self

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

(demo)

Dot notation automatically passes the first argument to a method

>>> a1 = Account('Brian')
>>> a1.deposit(100)
100

>>> a2 = Account('Brian')
>>> Account.deposit(a2, 100)
100

Bound to
self

Invoked with
one argument

Invoking Methods

• All methods have access to the object via the self parameter,
and so they can all access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

(demo)

Dot notation automatically passes the first argument to a method

>>> a1 = Account('Brian')
>>> a1.deposit(100)
100

>>> a2 = Account('Brian')
>>> Account.deposit(a2, 100)
100

Bound to
self

Invoked with
one argument

Invoked with
two arguments

Attributes

Dot Notation

Dot Notation

<expr>.<name>

Dot Notation

• Dot notation accesses attributes of an instance or its class

<expr>.<name>

Dot Notation

• Dot notation accesses attributes of an instance or its class

• <expr> can be any valid Python expression

<expr>.<name>

Dot Notation

• Dot notation accesses attributes of an instance or its class

• <expr> can be any valid Python expression

• Look up the value of <name> in the object <expr>

<expr>.<name>

Dot Notation

• Dot notation accesses attributes of an instance or its class

• <expr> can be any valid Python expression

• Look up the value of <name> in the object <expr>

<expr>.<name>

a.deposit(100)

Dot Notation

• Dot notation accesses attributes of an instance or its class

• <expr> can be any valid Python expression

• Look up the value of <name> in the object <expr>

<expr>.<name>

Call expression

a.deposit(100)

Dot Notation

• Dot notation accesses attributes of an instance or its class

• <expr> can be any valid Python expression

• Look up the value of <name> in the object <expr>

<expr>.<name>

Call expression

a.deposit(100)

Dot expression

Accessing Attributes

Accessing Attributes

<expr>.<name>

Accessing Attributes (demo)

<expr>.<name>

Accessing Attributes

• The built-in getattr function does the same thing as dot
expressions

(demo)

<expr>.<name>

Accessing Attributes

• The built-in getattr function does the same thing as dot
expressions

• a.balance is equivalent to getattr(a, 'balance')

(demo)

<expr>.<name>

Accessing Attributes

• The built-in getattr function does the same thing as dot
expressions

• a.balance is equivalent to getattr(a, 'balance')

• a.deposit is equivalent to getattr(a, 'deposit')

(demo)

<expr>.<name>

Accessing Attributes

• The built-in getattr function does the same thing as dot
expressions

• a.balance is equivalent to getattr(a, 'balance')

• a.deposit is equivalent to getattr(a, 'deposit')

• a.deposit(100) is equivalent to getattr(a, 'deposit')(100)

(demo)

<expr>.<name>

Accessing Attributes

• The built-in getattr function does the same thing as dot
expressions

• a.balance is equivalent to getattr(a, 'balance')

• a.deposit is equivalent to getattr(a, 'deposit')

• a.deposit(100) is equivalent to getattr(a, 'deposit')(100)

• The built-in hasattr function returns whether an object has an
attribute with that name

(demo)

<expr>.<name>

Accessing Attributes

• The built-in getattr function does the same thing as dot
expressions

• a.balance is equivalent to getattr(a, 'balance')

• a.deposit is equivalent to getattr(a, 'deposit')

• a.deposit(100) is equivalent to getattr(a, 'deposit')(100)

• The built-in hasattr function returns whether an object has an
attribute with that name

• Accessing an attribute in an object may return:

(demo)

<expr>.<name>

Accessing Attributes

• The built-in getattr function does the same thing as dot
expressions

• a.balance is equivalent to getattr(a, 'balance')

• a.deposit is equivalent to getattr(a, 'deposit')

• a.deposit(100) is equivalent to getattr(a, 'deposit')(100)

• The built-in hasattr function returns whether an object has an
attribute with that name

• Accessing an attribute in an object may return:

• One of its instance attributes, or

(demo)

<expr>.<name>

Accessing Attributes

• The built-in getattr function does the same thing as dot
expressions

• a.balance is equivalent to getattr(a, 'balance')

• a.deposit is equivalent to getattr(a, 'deposit')

• a.deposit(100) is equivalent to getattr(a, 'deposit')(100)

• The built-in hasattr function returns whether an object has an
attribute with that name

• Accessing an attribute in an object may return:

• One of its instance attributes, or

• One of the attributes of its class

(demo)

<expr>.<name>

Methods and Functions

Methods and Functions

• Python distinguishes between:

Methods and Functions

• Python distinguishes between:

• Functions, which we have been creating since the beginning
of the course

Methods and Functions

• Python distinguishes between:

• Functions, which we have been creating since the beginning
of the course

• Bound methods, which combines a function and the instance on
which that function will be invoked

Methods and Functions

• Python distinguishes between:

• Functions, which we have been creating since the beginning
of the course

• Bound methods, which combines a function and the instance on
which that function will be invoked

(demo)

Methods and Functions

• Python distinguishes between:

• Functions, which we have been creating since the beginning
of the course

• Bound methods, which combines a function and the instance on
which that function will be invoked

>>> a = Account('Brian')

(demo)

Methods and Functions

• Python distinguishes between:

• Functions, which we have been creating since the beginning
of the course

• Bound methods, which combines a function and the instance on
which that function will be invoked

>>> a = Account('Brian')
>>> type(Account.deposit)
<class 'function'>

(demo)

Methods and Functions

• Python distinguishes between:

• Functions, which we have been creating since the beginning
of the course

• Bound methods, which combines a function and the instance on
which that function will be invoked

>>> a = Account('Brian')
>>> type(Account.deposit)
<class 'function'>
>>> type(a.deposit)
<class 'method'>

(demo)

Methods and Functions

• Python distinguishes between:

• Functions, which we have been creating since the beginning
of the course

• Bound methods, which combines a function and the instance on
which that function will be invoked

>>> a = Account('Brian')
>>> type(Account.deposit)
<class 'function'>
>>> type(a.deposit)
<class 'method'>
>>> Account.deposit(a, 100)
100

(demo)

Methods and Functions

• Python distinguishes between:

• Functions, which we have been creating since the beginning
of the course

• Bound methods, which combines a function and the instance on
which that function will be invoked

>>> a = Account('Brian')
>>> type(Account.deposit)
<class 'function'>
>>> type(a.deposit)
<class 'method'>
>>> Account.deposit(a, 100)
100

Function: all arguments
are within parentheses

(demo)

Methods and Functions

• Python distinguishes between:

• Functions, which we have been creating since the beginning
of the course

• Bound methods, which combines a function and the instance on
which that function will be invoked

>>> a = Account('Brian')
>>> type(Account.deposit)
<class 'function'>
>>> type(a.deposit)
<class 'method'>
>>> Account.deposit(a, 100)
100
>>> a.deposit(100)
200

Function: all arguments
are within parentheses

(demo)

Methods and Functions

• Python distinguishes between:

• Functions, which we have been creating since the beginning
of the course

• Bound methods, which combines a function and the instance on
which that function will be invoked

>>> a = Account('Brian')
>>> type(Account.deposit)
<class 'function'>
>>> type(a.deposit)
<class 'method'>
>>> Account.deposit(a, 100)
100
>>> a.deposit(100)
200

Function: all arguments
are within parentheses

Method: one argument (self) before the dot
and other arguments within parentheses

(demo)

Class Attributes

Class Attributes

• Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance

Class Attributes

• Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance

class Account:

Class Attributes

• Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance

class Account:
 interest = 0.02

Class Attributes

• Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance

class Account:
 interest = 0.02
 def __init__(self, account_holder):

Class Attributes

• Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance

class Account:
 interest = 0.02
 def __init__(self, account_holder):
 self.balance = 0

Class Attributes

• Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance

class Account:
 interest = 0.02
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

Class Attributes

• Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance

class Account:
 interest = 0.02
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

(demo)

Class Attributes

• Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance

>>> a = Account('Brian')
>>> b = Account('Marvin')
>>> a.interest
0.02
>>> b.interest
0.02

class Account:
 interest = 0.02
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

(demo)

Class Attributes

• Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance

>>> a = Account('Brian')
>>> b = Account('Marvin')
>>> a.interest
0.02
>>> b.interest
0.02

The interest attribute is not part of the
instance; it's part of the class!

class Account:
 interest = 0.02
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

(demo)

Evaluating Dot Expressions

Evaluating Dot Expressions

<expr>.<name>

Evaluating Dot Expressions

• Evaluate <expr>, which yields the object of the dot expression

<expr>.<name>

Evaluating Dot Expressions

• Evaluate <expr>, which yields the object of the dot expression

• <name> is matched against the instance attributes of that
object; if an attribute with that name exists, its value is
returned

<expr>.<name>

Evaluating Dot Expressions

• Evaluate <expr>, which yields the object of the dot expression

• <name> is matched against the instance attributes of that
object; if an attribute with that name exists, its value is
returned

• If not, <name> is looked up in the class, which yields a class
attribute value

<expr>.<name>

Evaluating Dot Expressions

• Evaluate <expr>, which yields the object of the dot expression

• <name> is matched against the instance attributes of that
object; if an attribute with that name exists, its value is
returned

• If not, <name> is looked up in the class, which yields a class
attribute value

• That value is returned unless it is a function, in which case a
bound method is returned instead

<expr>.<name>

Break!

Inheritance

Inheritance

Inheritance

• Inheritance is a technique for relating classes together

Inheritance

• Inheritance is a technique for relating classes together

• Common use: a specialized class inherits from a more general
class

Inheritance

• Inheritance is a technique for relating classes together

• Common use: a specialized class inherits from a more general
class

class <new class>(<base class>):  
 ...

Inheritance

• Inheritance is a technique for relating classes together

• Common use: a specialized class inherits from a more general
class

class <new class>(<base class>):  
 ...

• The new class shares attributes with the base class (inherits
attributes of its base class)

Inheritance

• Inheritance is a technique for relating classes together

• Common use: a specialized class inherits from a more general
class

class <new class>(<base class>):  
 ...

• The new class shares attributes with the base class (inherits
attributes of its base class)

• The new class overrides certain inherited attributes

Inheritance

• Inheritance is a technique for relating classes together

• Common use: a specialized class inherits from a more general
class

class <new class>(<base class>):  
 ...

• The new class shares attributes with the base class (inherits
attributes of its base class)

• The new class overrides certain inherited attributes

• Implementing the new class is now as simple as specifying how
it’s different from the base class

Inheritance Example

class Account:
 """A bank account."""  
 ...

class CheckingAccount(Account):
 """A checking account."""  
 ...

Inheritance Example

• Bank accounts have:

class Account:
 """A bank account."""  
 ...

class CheckingAccount(Account):
 """A checking account."""  
 ...

• Checking accounts have:

Inheritance Example

• Bank accounts have:

• an account holder

class Account:
 """A bank account."""  
 ...

class CheckingAccount(Account):
 """A checking account."""  
 ...

• Checking accounts have:

• an account holder

Inheritance Example

• Bank accounts have:

• an account holder

• a balance

class Account:
 """A bank account."""  
 ...

class CheckingAccount(Account):
 """A checking account."""  
 ...

• Checking accounts have:

• an account holder

• a balance

Inheritance Example

• Bank accounts have:

• an account holder

• a balance

• an interest rate of 2%

class Account:
 """A bank account."""  
 ...

class CheckingAccount(Account):
 """A checking account."""  
 ...

• Checking accounts have:

• an account holder

• a balance

• an interest rate of 1%

Inheritance Example

• Bank accounts have:

• an account holder

• a balance

• an interest rate of 2%

class Account:
 """A bank account."""  
 ...

class CheckingAccount(Account):
 """A checking account."""  
 ...

• Checking accounts have:

• an account holder

• a balance

• an interest rate of 1%

• a withdrawal fee of $1

Inheritance Example

• Bank accounts have:

• an account holder

• a balance

• an interest rate of 2%

• You can:

class Account:
 """A bank account."""  
 ...

class CheckingAccount(Account):
 """A checking account."""  
 ...

• Checking accounts have:

• an account holder

• a balance

• an interest rate of 1%

• a withdrawal fee of $1

• You can:

Inheritance Example

• Bank accounts have:

• an account holder

• a balance

• an interest rate of 2%

• You can:

• deposit to an account

class Account:
 """A bank account."""  
 ...

class CheckingAccount(Account):
 """A checking account."""  
 ...

• Checking accounts have:

• an account holder

• a balance

• an interest rate of 1%

• a withdrawal fee of $1

• You can:

• deposit to an account

Inheritance Example

• Bank accounts have:

• an account holder

• a balance

• an interest rate of 2%

• You can:

• deposit to an account

• withdraw from an account

class Account:
 """A bank account."""  
 ...

class CheckingAccount(Account):
 """A checking account."""  
 ...

• Checking accounts have:

• an account holder

• a balance

• an interest rate of 1%

• a withdrawal fee of $1

• You can:

• deposit to an account

• withdraw from an account
(but there's a fee!)

Inheritance Example

• Bank accounts have:

• an account holder

• a balance

• an interest rate of 2%

• You can:

• deposit to an account

• withdraw from an account

class Account:
 """A bank account."""  
 ...

class CheckingAccount(Account):
 """A checking account."""  
 ...

• Checking accounts have:

• an account holder

• a balance

• an interest rate of 1%

• a withdrawal fee of $1

• You can:

• deposit to an account

• withdraw from an account
(but there's a fee!)

Inheritance Example

• Bank accounts have:

• an account holder

• a balance

• an interest rate of 2%

• You can:

• deposit to an account

• withdraw from an account

class Account:
 """A bank account."""  
 ...

class CheckingAccount(Account):
 """A checking account."""  
 ...

• Checking accounts have:

• an account holder

• a balance

• an interest rate of 1%

• a withdrawal fee of $1

• You can:

• deposit to an account

• withdraw from an account
(but there's a fee!)

(demo)

Attribute Lookup on Classes

Attribute Lookup on Classes

Base class attributes aren't copied into subclasses!

Attribute Lookup on Classes

Base class attributes aren't copied into subclasses!

To look up a name in a class:

Attribute Lookup on Classes

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

Attribute Lookup on Classes

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Attribute Lookup on Classes

>>> ch = CheckingAccount('Marvin')

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Attribute Lookup on Classes

>>> ch = CheckingAccount('Marvin') # Account.__init__

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Attribute Lookup on Classes

>>> ch = CheckingAccount('Marvin') # Account.__init__

>>> ch.interest

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Attribute Lookup on Classes

>>> ch = CheckingAccount('Marvin') # Account.__init__

>>> ch.interest # Found in CheckingAccount

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Attribute Lookup on Classes

>>> ch = CheckingAccount('Marvin') # Account.__init__

>>> ch.interest

0.01

Found in CheckingAccount

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Attribute Lookup on Classes

>>> ch = CheckingAccount('Marvin') # Account.__init__

>>> ch.interest

0.01

>>> ch.deposit(20)

Found in CheckingAccount

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Attribute Lookup on Classes

>>> ch = CheckingAccount('Marvin') # Account.__init__

>>> ch.interest

0.01

>>> ch.deposit(20) # Found in Account

Found in CheckingAccount

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Attribute Lookup on Classes

>>> ch = CheckingAccount('Marvin') # Account.__init__

>>> ch.interest

0.01

>>> ch.deposit(20) # Found in Account

20

Found in CheckingAccount

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Attribute Lookup on Classes

>>> ch = CheckingAccount('Marvin') # Account.__init__

>>> ch.interest

0.01

>>> ch.deposit(20) # Found in Account

20

>>> ch.withdraw(5)

Found in CheckingAccount

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Attribute Lookup on Classes

>>> ch = CheckingAccount('Marvin') # Account.__init__

>>> ch.interest

Found in CheckingAccount

0.01

>>> ch.deposit(20) # Found in Account

20

>>> ch.withdraw(5)

Found in CheckingAccount

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Attribute Lookup on Classes

>>> ch = CheckingAccount('Marvin') # Account.__init__

>>> ch.interest

Found in CheckingAccount

0.01

>>> ch.deposit(20) # Found in Account

20

>>> ch.withdraw(5)

Found in CheckingAccount

14

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Attribute Lookup on Classes (demo)

>>> ch = CheckingAccount('Marvin') # Account.__init__

>>> ch.interest

Found in CheckingAccount

0.01

>>> ch.deposit(20) # Found in Account

20

>>> ch.withdraw(5)

Found in CheckingAccount

14

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists

Designing for Inheritance

Designing for Inheritance

• Don't repeat yourself; use existing implementations

Designing for Inheritance

• Don't repeat yourself; use existing implementations

class CheckingAccount(Account):
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Designing for Inheritance

• Don't repeat yourself; use existing implementations

• Attributes that have been overridden are still accessible via
class objects

class CheckingAccount(Account):
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Designing for Inheritance

• Don't repeat yourself; use existing implementations

• Attributes that have been overridden are still accessible via
class objects

class CheckingAccount(Account):
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Attribute look-up
on base class

Designing for Inheritance

• Don't repeat yourself; use existing implementations

• Attributes that have been overridden are still accessible via
class objects

• Look up attributes on instances whenever possible

class CheckingAccount(Account):
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Attribute look-up
on base class

Designing for Inheritance

• Don't repeat yourself; use existing implementations

• Attributes that have been overridden are still accessible via
class objects

• Look up attributes on instances whenever possible

class CheckingAccount(Account):
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Attribute look-up
on base class Preferred to

CheckingAccount.withdraw_fee
to allow for further

specialization

Summary

Summary

• Object-oriented programming is another way (paradigm) to
organize and reason about programs

Summary

• Object-oriented programming is another way (paradigm) to
organize and reason about programs

• Computations are the result of interactions between objects

Summary

• Object-oriented programming is another way (paradigm) to
organize and reason about programs

• Computations are the result of interactions between objects

• The Python class statement allows us to create user-defined
data types that can be used just like built-in data types

Summary

• Object-oriented programming is another way (paradigm) to
organize and reason about programs

• Computations are the result of interactions between objects

• The Python class statement allows us to create user-defined
data types that can be used just like built-in data types

• Inheritance is a powerful tool for further extending these
user-defined data types

