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• Homework 6 is due 7/20 at 11:59pm

• Project 3 is due 7/26 at 11:59pm

• Earn 1 EC point for completing it by 7/25

• Quiz 5 on 7/21 at the beginning of lecture

• May cover mutability, object-oriented programming

• Midterm grades are released, regrade requests due tonight
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Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Objects), the goals are:
• To learn the paradigm of 

object-oriented programming

• To study applications of, and 
problems that be solved using, OOP
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Previously, on CS 61A...

• We defined our own data types!

• Rational numbers, dictionaries, linked lists, trees

• Data abstraction helped us manage the complexity of using these 
new data types

• Separated their usage from their underlying implementation

• We defined operations for these data types:

• len_link, getitem_link, contains_link, map_link...

• Problems?

• Abstraction violations

• Program organization
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Object-Oriented Programming

• A new programming paradigm: think in terms of objects

• Objects have attributes and can take actions

• Objects can interact with each other

• Computations are the result of interactions between objects
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• Every object is an instance of a class

• A class is a type or a category of objects (often capitalized)

• A class provides a blueprint for its objects

Classes

Brian is a Humaninstance class

instance 
attributes

Brian has a name and an age
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The Account Class

>>> a = Account('Brian')
>>> a.balance
0
>>> a.holder
'Brian'

>>> a.deposit(15)
15
>>> a.balance
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'

Idea: All bank accounts have a 
balance and an account holder; 
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those attributes to each newly 
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Idea: All bank accounts should 
have withdraw and deposit 
behaviors that all work in the 
same way

Better idea: All bank accounts 
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The Class Statement

• When executing a class statement, Python creates a new frame 
and executes the statements in <suite> (typically assignment 
and def statements)

• Once all the statements in <suite> have been executed, a new 
class with those bindings is created and bound to <name> in the 
first frame of the original environment

class <name>:
    <suite>
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Object Identity

Every object that is an instance of a user-defined class has a 
unique identity:

>>> a = Account('Brian')
>>> b = Account('Marvin')
>>> a.holder
'Brian'
>>> b.holder
'Marvin'
>>> a is b
False

Every call to Account creates 
a new Account instance.

Binding an object to a new name using assignment does not create 
a new object:

>>> c = a
>>> c is a
True
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Methods

• Methods are functions defined within a class statement

• These def statements create function objects as always, but 
their names are bound as attributes of the class

class Account:
    def __init__(self, account_holder):
        self.balance = 0
        self.holder = account_holder

    def deposit(self, amount):
        self.balance = self.balance + amount
        return self.balance

    def withdraw(self, amount):
        if amount > self.balance:
            return 'Insufficient funds'
        self.balance = self.balance - amount
        return self.balance

self should always be bound to 
an instance of the Account class
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class Account:
    ...
    def deposit(self, amount):
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(demo)
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• Dot notation accesses attributes of an instance or its class 

• <expr> can be any valid Python expression

• Look up the value of <name> in the object <expr>

<expr>.<name>

Call expression

a.deposit(100)
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• The built-in getattr function does the same thing as dot 
expressions

• a.balance is equivalent to getattr(a, 'balance')

• a.deposit is equivalent to getattr(a, 'deposit')

• a.deposit(100) is equivalent to getattr(a, 'deposit')(100)

• The built-in hasattr function returns whether an object has an 
attribute with that name

• Accessing an attribute in an object may return:

• One of its instance attributes, or

• One of the attributes of its class

(demo)
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Methods and Functions

• Python distinguishes between:

• Functions, which we have been creating since the beginning 
of the course 

• Bound methods, which combines a function and the instance on 
which that function will be invoked

>>> a = Account('Brian')
>>> type(Account.deposit)
<class 'function'>
>>> type(a.deposit)
<class 'method'>
>>> Account.deposit(a, 100)
100
>>> a.deposit(100)
200

Function: all arguments 
are within parentheses

Method: one argument (self) before the dot 
and other arguments within parentheses

(demo)
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Class Attributes

• Class attributes are "shared" across all instances of a class 
because they are attributes of the class, not the instance

>>> a = Account('Brian')
>>> b = Account('Marvin')
>>> a.interest
0.02
>>> b.interest
0.02

The interest attribute is not part of the 
instance; it's part of the class!

class Account:
    interest = 0.02
    def __init__(self, account_holder):
        self.balance = 0
        self.holder = account_holder

(demo)
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Evaluating Dot Expressions

• Evaluate <expr>, which yields the object of the dot expression

• <name> is matched against the instance attributes of that 
object; if an attribute with that name exists, its value is 
returned

• If not, <name> is looked up in the class, which yields a class 
attribute value

• That value is returned unless it is a function, in which case a 
bound method is returned instead

<expr>.<name>
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Inheritance

• Inheritance is a technique for relating classes together

• Common use: a specialized class inherits from a more general 
class

class <new class>(<base class>):  
    ...

• The new class shares attributes with the base class (inherits 
attributes of its base class)

• The new class overrides certain inherited attributes

• Implementing the new class is now as simple as specifying how 
it’s different from the base class
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>>> ch = CheckingAccount('Marvin') # Account.__init__

>>> ch.interest

# Found in CheckingAccount

0.01

>>> ch.deposit(20) # Found in Account

20

>>> ch.withdraw(5)

# Found in CheckingAccount

14

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it is an attribute in the class, return that value.

2. Otherwise, look up the name in the base class, if one exists
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Designing for Inheritance

• Don't repeat yourself; use existing implementations

• Attributes that have been overridden are still accessible via 
class objects

• Look up attributes on instances whenever possible

class CheckingAccount(Account):
    withdraw_fee = 1
    interest = 0.01
    def withdraw(self, amount):
        return Account.withdraw(self,
                                amount + self.withdraw_fee)

Attribute look-up 
on base class Preferred to 

CheckingAccount.withdraw_fee 
to allow for further 

specialization
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Summary

• Object-oriented programming is another way (paradigm) to 
organize and reason about programs

• Computations are the result of interactions between objects

• The Python class statement allows us to create user-defined 
data types that can be used just like built-in data types

• Inheritance is a powerful tool for further extending these 
user-defined data types


