
Lecture 16: Object-Oriented Programming II

Marvin Zhang
07/19/2016

Announcements

Survey Responses (Thanks!)

Highlights from the survey:
• Many students reevaluated their starting ability
• Lab checkoffs: most think they’re worthwhile

• Others think it’s stressful or it’s too easy
• They should be easy and not stressful
• It’s not unreasonable to ask you to come to lab

once a week
• Homework 3 and Quiz 4 were so hard!

• Homework assignments are graded on effort
• We will do coding quizzes a little differently

More Survey Responses

• Remove the auto-grader delay on projects!
• Nope, it’s for your own good

• Have two midterms instead of quizzes!
• Nope, it’s for your own good

• Brian and I will slow down the demos in lecture
• When we can

• Brian’s office hours are great
• Some administrative things are out of our control
• 1/6 students came to the potluck, 5/6 want

another one

Roadmap

• This week (Objects), the goals are:

• To learn the paradigm of 
object-oriented programming

• To study applications of, and
problems that be solved using, OOP

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Inheritance

• Powerful idea in Object-Oriented Programming
• Way of relating similar classes together
• Common use: a specialized class inherits from a

more general class

class <new class>(<base class>):  
 ...

• The new class shares attributes with the base
class, and overrides certain attributes

• Implementing the new class is now as simple as
specifying how it’s different from the base class

Inheritance Example (demo)

class Pokemon:  
 """A Pokemon."""  
 ...

• Pokémon have:
• a name

• a trainer

• a level
• an amount of HP (life)

• a basic attack: tackle

• Pokémon can:
• say their name

• attack other Pokémon

class ElectricType(Pokemon):  
 """An electric-type Pokemon."""  
 ...

• Electric-type Pokémon have:

• a name

• a trainer
• a level

• an amount of HP (life)

• a basic attack: thunder shock

• Electric-type Pokémon can:
• say their name

• attack and sometimes paralyze
other Pokémon

• Don’t repeat yourself! Use existing implementations
• Reuse overridden attributes by accessing them through

the base class
• Look up attributes on instances if possible

class ElectricType(Pokemon):  
 basic_attack = 'thunder shock'  
 prob = 0.1  
 def attack(self, other):  
 Pokemon.attack(self, other)  
 if random() < self.prob and type(other) != ElectricType:  
 other.paralyzed = True  
 print(other.name, 'is paralyzed!')

Designing for Inheritance

Multiple Inheritance

• In Python, a class can inherit from multiple
base classes

• This exists in many but not all object-
oriented languages

• This is a tricky and often dangerous subject,
so proceed carefully!

class FlyingType(Pokemon):  
 basic_attack = 'peck'  
 damage = 35  
 def fly(self, location):  
 print(self.trainer, 'flew to', location)

Multiple Inheritance Example

• Zapdos	is	a	legendary	bird	Pokémon	

• Zapdos’	attack,	thunder,	does	a	lot	of	damage	

• Zapdos	can	paralyze	when	attacking	

• Zapdos	can	fly	

• Zapdos	can’t	say	its	own	name

class Zapdos(ElectricType, FlyingType):  
 basic_attack = 'thunder'  
 damage = 120  
 def speak(self):  
 print('EEEEEEEE')

Multiple Inheritance Example

Zapdos

Pokemon

FlyingTypeElectricType

(demo) More on Design

• This example has been shortened for lecture purposes, and
could have better design if done properly

• We should create a class for every species of Pokémon
• Consequently, we should not create instances of the

Pokemon, ElectricType, or FlyingType classes

• We should create classes for different types of attacks,
with damage and special effect attributes

• The relationship between classes that reference each
other (e.g., Pokemon and Tackle) is called composition

• Good design is a bigger topic in future classes

Complicated Inheritance

To show how complicated inheritance can be, let’s look at
an analogy through biological inheritance.

You

Mom Dad

Gramma Gramps GrandmomGrandpop

Aunt

some	guy

HalfDouble

Half	Cousin

some	other	guy Double	Half	Uncle

Quadruple

Moral of the story:
Inheritance, especially multiple inheritance,
is complicated and weird. Use it carefully!

Double

Raising and handling exceptions

Exceptions

Exceptions

• In Python, exceptions alter the control flow of programs
for exceptional circumstances, e.g., errors

• Exceptions cause the program to halt immediately and
print a stack trace if not handled

• There are many different types of exceptions

(demo)

>>> square
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'square' is not defined

stack	trace

exception	type message

line	number

Raising Exceptions

• We can cause an exception in our program by using the
raise statement:

• <expression> must evaluate to either an exception class
or instance
• Otherwise, an error occurs…

• An exception class is any class that inherits from the
built-in BaseException class

• Almost all built-in exceptions inherit from the
Exception class, which inherits from BaseException

(demo)

raise <expression>

User-defined Exceptions

• It’s possible to create our own exception types by
defining a new class that inherits from Exception or a
subclass of Exception

• These user-defined exceptions can then be used in raise
statements, just like any other exception

• There aren’t many reasons to create new exceptions, since
Python already has so many

raise MySpecialException('so special')

class MySpecialException(Exception):  
 def __init__(self, msg):  
 # special magic

Handling Exceptions

• The try statement allows us to handle exceptions and
continue running our program

try:  
 <try suite>  
except <exception type> as <name>:  
 <except suite>

Execution Rule for try Statements:

1. Execute the <try suite>.

2. If an exception of <exception type> is raised,
switch to executing the <except suite> with <name>
bound to the exception that was raised.

(demo)

Python protocols and magic methods

Interfaces

Interfaces

• Computer science often involves communication between
different components
• Communication between the program and the user, between

two different programs, between two objects in the same
program, etc.

• This can get very complicated, since these components
often have different behaviors and specifications

• Interfaces specify rules for communication between these
components, and this is a form of abstraction!
• E.g., to use an object, we don’t need to know how it is

implemented if we know the interface for the object

• There are several common interfaces that are widely used
in Python, called protocols

Python Object Interfaces

• In Python, object interfaces are usually implemented
through magic methods
• Special methods surrounded by double underscores 

(e.g., __init__) that add “magic” to your classes

• We will look at two examples of these interfaces:
• The arithmetic interface
• The (mutable) container protocol

• For more information, see: 
http://www.rafekettler.com/magicmethods.html

(demo)

• Python has many built-in container types: lists,
tuples, ranges, dictionaries, etc.

• Python also has a protocol for defining custom
container classes

• Defining custom containers is as easy as
implementing the __len__, __getitem__, and
__contains__ magic methods

• __len__ is called by len, __getitem__ is used in
indexing, and __contains__ is used in membership

• To create a mutable container, we can also
implement the __setitem__ and __delitem__ methods

Custom Containers (demo)

Summary

• Inheritance allows us to implement relationships
between classes and simplify our programs

• Interfaces allow for standardized interaction
between different components by defining rules
for communication
• Implementing interfaces in Python can allow our

custom classes to behave like built-in classes

• Both are tools for abstraction, and learning them
well is one of the keys to becoming a great
object-oriented programmer

