
Brian Hou
July 20, 2016

Lecture 17: Mutable Linked Lists

Announcements

• Homework 6 is due today at 11:59pm
• Project 3 is due 7/26 at 11:59pm

• Earn 1 EC point for completing it by 7/25

• Quiz 5 tomorrow at the beginning of lecture
• May cover mutability, OOP I (Monday)

• Project 1 revisions due 7/27 at 11:59pm

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Objects), the goals are:

• To learn the paradigm of 
object-oriented programming

• To study applications of, and
problems that be solved using, OOP

Practical OOP

Checking Types (and Accounts)

• We often check the type of
an object to determine
what operations it permits

• The type built-in function
returns the class that its
argument is an instance of

• The isinstance built-in
function returns whether
its first argument
(object) is an instance of
the second argument
(class) or a subclass

• isinstance(obj, cls) is
usually preferred over
type(obj) == cls

(demo)

>>> a = Account('Brian')
>>> ch = CheckingAccount('Brian')

>>> type(a) == Account
True
>>> type(ch) == Account
False
>>> type(ch) == CheckingAccount

True

>>> isinstance(a, Account)
True
>>> isinstance(ch, Account)

True
>>> isinstance(a, CheckingAccount)
False
>>> isinstance(ch, CheckingAccount)
True

Python's Magic Methods

• How does the Python interpreter display values?

• First, it evaluates the expression to some value

• Then, it calls repr on that value and prints that string

• How do magic methods work?

• Are integers objects too? (Yep!)

• Are ____ objects too? (Yep!)

(demo)

>>> x = Rational(3, 5)
>>> y = Rational(1, 3)
>>> y

Rational(1, 3)
>>> repr(y)
'Rational(1, 3)'
>>> print(repr(y))
Rational(1, 3)
>>> x * y

Rational(1, 5)
>>> x.__mul__(y)
Rational(1, 5)

Linked Lists

The Link Class

class Link:

 empty = ()

 def __init__(self, first,
 rest=empty):
 self.first = first
 self.rest = rest

empty = 'X'

def link(first, rest=empty):
 return [first, rest]

def first(lnk):
 return lnk[0]

def rest(lnk):
 return lnk[1]

>>> link_adt = link(1,
 link(2,

 link(3)))
>>> first(rest(link_adt))
2

>>> link_cls = Link(1,
 Link(2,

 Link(3)))
>>> link_cls.rest.first
2

Mutable Linked Lists

• Instances of user-defined classes are mutable by default

(demo)

class Link:
 empty = ()

 def __init__(self, first, rest=empty):

 self.first = first
 self.rest = rest

 def __repr__(self):
 if self.rest is Link.empty:
 return 'Link({0})'.format(

 self.first)
 else:
 return 'Link({0}, {1})'.format(
 self.first, repr(self.rest))

Another sneaky recursive
call: equivalent to
self.rest.__len__()

Where's the base case??

Sneaky recursive call:
equivalent to

self.rest.__getitem__(i-1)

class Link:
 empty = ()

 ...

 def __getitem__(self, i):
 if i == 0:
 return self.first

 elif self.rest is Link.empty:
 raise IndexError('...')
 else:
 return self.rest[i - 1]

 def __len__(self):
 return 1 + len(self.rest)

Linked Lists are Sequences (demo)

class Link:
 ...
 def __setitem__(self, i, val):
 if i == 0:
 self.first = val

 elif self.rest is Link.empty:
 raise IndexError('...')
 else:
 self.rest[i - 1] = val

The __setitem__ Magic Method (demo)

>>> s = Link(1, Link(2, Link(3)))

>>> s[1] = 3
>>> s
Link(1, Link(3, Link(3)))

class Link:
 ...
 def map(self, f):
 for i in range(len(self)):
 self[i] = f(self[i])

Mutating Map (demo)

>>> s = Link(1, Link(2, Link(3)))

>>> s.map(lambda x: x * x)
>>> s
Link(1, Link(4, Link(9)))

Runtime?

class Link:
 ...

 def __getitem__(self, i):
 if i == 0:
 return self.first
 else:
 return self.rest[i - 1]

 def map(self, f):
 for i in range(len(self)):
 self[i] = f(self[i])

Mutating Map

>>> s = Link(1, Link(2, Link(3)))
>>> s.map(lambda x: x * x)
>>> s
Link(1, Link(4, Link(9)))

θ(n2)

self[0] = f(self[0])

self[1] = f(self[1])

self[2] = f(self[2])

self[n-1] = f(self[n-1])

...

class Link:
 ...
 def map(self, f):

 self.first = f(self.first)
 if self.rest is not Link.empty:
 self.rest.map(f)

Mutating Map (Improved)

>>> s = Link(1, Link(2, Link(3)))
>>> s.map(lambda x: x * x)
>>> s
Link(1, Link(4, Link(9)))

θ(n)

Runtime?

(demo)

class Link:
 ...

 def __contains__(self, e):
 return self.first == e or e in self.rest

contains and in

>>> s = Link(1, Link(2, Link(3)))
>>> 2 in s
True
>>> 4 in s

False

(demo)

Break!

Environments

Environment Frames

• An environment is a sequence of frames

• Each frame has some data (bindings) and a parent, which
points to another frame

• A linked list is a sequence of values

• Each link has some data (first) and a rest, which points to
another link

• An environment is just a special case of a linked list!

Environment Frames

• An environment is a sequence of frames

• Each frame has some data (bindings) and a parent, which
points to another frame

• A linked list is a sequence of values

• Each link has some data (first) and a rest, which points to
another link

• An environment is just a special case of a linked list!

(demo) The Call Stack

• A stack is a data structure that permits two operations

• Add to the top of a stack ("push")

• Remove from the top of a stack ("pop")

• Two new Link operations required: insert_front and remove_front

• A call stack keeps track of frames that are currently open

• Calling a function adds a new frame to the stack

• Returning from a function removes that frame from the stack

• The current frame is always on the top of the stack

(demo)

Python

BrythonPython

• What if we could have Python functions use the environment
frames and the call stack that we just defined?

• Two important parts:

• What should happen when defining a Brython function?

• What should happen when calling a Brython function?

A different Brython: http://brython.info/

Function Definitions

• What happens in a function definition?

• Determine the current frame of execution: this is the
function's parent frame

• Bind the function name to the function value

Function Calls

• What happens in a function call?

• Create a brand new call frame (using the function parent as
the parent of that frame) and insert it into the stack

• Bind function's parameters to arguments

• Execute the function in the environment of the call frame

• Remember: the current frame is at the top of the stack

• After executing the function, remove the frame from the
stack

(demo)

Summary

• Linked lists are one way to store sequential data

• An object-based implementation of the linked list abstraction
allows for easy mutability

• No more crazy nonlocal stuff!

• Implementing magic methods lets us hook into convenient Python
syntax and built-in functions

• Linked lists can be used to implement some of the core ideas of
this course!

