Announcements

* Homework 6 is due today at 11:59pm
Project 3 is due 7/26 at 11:59pm

Lecture 17: Mutable Linked Lists

Brian Hou
July 20, 2016

- Earn 1 EC point for completing it by 7/25

+ Quiz 5 tomorrow at the beginning of lecture

- May cover mutability, 00P I (Monday)

* Project 1 revisions due 7/27 at 11:59pm

Roadmap
Introduction
Functions
« This week (Objects), the goals are:
Data .

Interpretation
Applications

To learn the paradigm of
object-oriented programming

To study applications of, and
problems that be solved using, 00P

Practical 00P

Checking Types (and Accounts) (demo)

We often check the type of
an object to determine
what operations it permits

The type built-in function
returns the class that its
argument is an instance of

+ The isinstance built-in
function returns whether
its first argument
(object) is an instance of
the second argument
(class) or a subclass

isinstance(obj, cls) is
usually preferred over
type(obj) == cls

>>> a = Account('Brian')

>>> ch = CheckingAccount('Brian')

>>> type(a) Account

True

>>> type(ch) Account

False

>>> type(ch) CheckingAccount
True

>>> isinstance(a, Account)

True

>>> isinstance(ch, Account)

True

>>> isinstance(a, CheckingAccount)
False

>>> isinstance(ch, CheckingAccount)
True

Python's Magic Methods

(demo)

- How does the Python interpreter display values?

« First, it evaluates the expression to some value

- Then, it calls repr on that value and prints that string

- How do magic methods work?
+ Are integers objects too? (Yep!)

- Are objects too? (Yep!)

>>> x = Rational(3, 5)
>>> y = Rational(1l, 3)
>>> y

Rational(1l, 3)

>>> repr(y)
'Rational(1, 3)'

>>> print(repr(y))
Rational(1l, 3)

>>> x *y

Rational(1l, 5)

>>> x.__mul__ (y)
Rational(1l, 5)




Linked Lists

The Link Class

empty = 'X'

def link(first, rest=empty):
return [first, rest]

def first(lnk):
return 1lnk[0]

def rest(lnk):
return 1lnk[1]

>>> link_adt = link(1,
link(2,
link(3)))
>>> first(rest(link_adt))

class Link:

empty = ()

def _ init_ (self, first,
rest=empty) :
self.first = first
self.rest = rest

>>> link_cls = Link(1,
Link(2,
Link(3)))

>>> link cls.rest.first

2

Mutable Linked Lists (demo)

- Instances of user-defined classes are mutable by default

class Link:
empty = ()

def _ init_ (self, first, rest=empty):
self.first = first
self.rest = rest

def _ repr_ (self):
if self.rest is Link.empty:
return 'Link({0})'.format(
self.first)
else:
return 'Link({0}, {1})'.format(
self.first, repr(self.rest))

Linked Lists are Sequences (demo)

Sneaky recursive call:
equivalent to
self.rest.__getitem__(i-1)

Another sneaky recursive
call: equivalent to
self.rest.__len__()

<Where's the base case??

__getitem (self, i):
if i == 0:
return self.first

return 1 +; len(s

elf.rest)

The __setitem__ Magic Method (demo)

>>> s = Link(1l, Link(2, Link(3)))
>>> s[l] = 3

>>> g

Link(1l, Link(3, Link(3)))

class Link:

def _ setitem (self, i, val):
if i == 0:
self.first = val
elif self.rest is Link.empty:
raise IndexError('...')
else:
self.rest[i - 1] = val

Mutating Map

(demo)

>>> s = Link(1, Link(2, Link(3)))

>>> s.map(lambda x: X * X)

>>> 5

Link(1l, Link(4, Link(9)))

class Link:

def map(self, f):
for i in range(len(self)):

self[i]

= f(self[i])

Runtime?




Mutating Map

>>> s = Link(1, Link(2, Link(3)))
>>> s.map(lambda x: x X)

>>> g

Link(1l, Link(4, Link(9)))

class Link:

def _ getitem (self, i):
if i 0:
return self.first
else:
return self.rest[i 1]

def map(self, f):

self[0] = f(self[0])

self[1] = f(self[1l])

self[2] = f(self[2])

self[n-1] = f(self[n-1])

Mutating Map (Improved) (demo)

>>> s = Link(1, Link(2, Link(3)))
>>> s.map(lambda x: X X)
>>> s
Link(1l, Link(4, Link(9)))
Runtime?

class Link: 0(n)
def map(self, f):
self.first = f(self.first)
if self.rest is not Link.empty:
self.rest.map(f)

for i in range(len(self)): 6(n?)
self[i] = f(self[i])
contains and in (demo)
class Link:
def _ contains__ (self, e):
return self.first e or e in self.rest

>>> s = Link(1, Link(2, Link(3)))

>>> 2 in s
True
>>> 4 in s

Break!

False
Environment Frames
- An environment is a sequence of frames
+ Each frame has some data (bindings) and a parent, which
points to another frame
Environments < A linked list is a sequence of values

- Each link has some data (first) and a rest, which points to
another link

- An environment is just a special case of a linked list!




Environment Frames (demo)

* An environment is a sequence of frames

- Each frame has some data (bindings) and a parent, which
points to another frame

* A linked list is a sequence of values

- Each link has some data (first) and a rest, which points to
another link

« An environment is just a special case of a linked list!

The Call Stack (demo)

* A stack is a data structure that permits two operations
« Add to the top of a stack ("push") _—
« Remove from the top of a stack ("pop") e i
\-

* Two new Link operations required: insert_front and remove_front
« A call stack keeps track of frames that are currently open

« Calling a function adds a new frame to the stack

« Returning from a function removes that frame from the stack

« The current frame is always on the top of the stack

Python

Byyhbaon

- What if we could have Python functions use the environment
frames and the call stack that we just defined?

+ Two important parts:
* What should happen when defining a Brython function?

« What should happen when calling a Brython function?

A different Brython: http://brython.info/

Function Definitions

- What happens in a function definition?

« Determine the current frame of execution: this is the
function's parent frame

- Bind the function name to the function value

Function Calls (demo)

- What happens in a function call?

+ Create a brand new call frame (using the function parent as
the parent of that frame) and insert it into the stack

« Bind function's parameters to arguments
+ Execute the function in the environment of the call frame
* Remember: the current frame is at the top of the stack

- After executing the function, remove the frame from the
stack




Summary

* Linked lists are one way to store sequential data

« An object-based implementation of the linked list abstraction
allows for easy mutability

+ No more crazy nonlocal stuff!

» Implementing magic methods lets us hook into convenient Python
syntax and built-in functions

« Linked lists can be used to implement some of the core ideas of
this course!




