Lecture 18: Mutable Trees

Mitas Ray
07/21/2016

Announcements

http://cs61a.org

Trees

Terminology

Terminology

Terminology

* Node: single unit containing
an entry

Terminology

* Node: single unit containing
an entry

* Root: top node

Terminology

* Node: single unit containing
an entry

* Root: top node

e Leaf: a node with no children

Terminology

* Node: single unit containing
an entry

* Root: top node
e Leaf: a node with no children

e Children: subtree with a
parent

Tree Class

Tree Class

class Tree:

Tree Class

class Tree:
def init (self, entry, children=[]):

self.entry = entry
self.children = children

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:

assert isinstance(c, Tree)
self.entry = entry

self.children = children

def is leaf(self):

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:

assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:

assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t = Tree(3, [Tree(2, [Tree(1l)]),Tree(4)7)

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.entry

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>>"t.entry

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t =_Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.entry

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.entry
3

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>»>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.entry

3

>>> t.children[@].entry

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t = Tree(3, [[Tree(2, [Tree(1)]), Tree(4)])
>>> t.entry

3

>>>;t.children[@].entry

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t = Tree(3, [Tree(2. [Tree(1l)]), Tree(4)])
>>> t.entry

3

>>> . t.children[@].entry

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>»>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.entry

3

>>> t.children[@].entry

2

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.entry

3

>>> t.children[@].entry

2

>>> t.children[1].is leaf()

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t = Tree(3, [Tree(2, [Tree(1l)]),'Tree(4)1)
>>> t.entry

3

>>> t.children[@].entry

2

>>>it.children[1].is _leaf()

/N
l

Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.entry

3

>>> t.children[@].entry

2

>>> t.children[1].is leaf()

True

Comparison to ADT

Comparison to ADT

class Tree: def tree(entry, children=[]):
def init (self, entry, return [entry, children]
children=[]):
for ¢ in children: def entry(tree):
assert isinstance(c, Tree) return treel[0]
self.entry = entry
self.children = children def children(tree):
return tree[1l]

Comparison to ADT

class Tree: def tree(entry, children=[]):
def init (self, entry, return [entry, children]
children=[1]):
for ¢ in children: def entry(tree):
assert isinstance(c, Tree) return treel[0]
self.entry = entry
self.children = children def children(tree):
return tree[1l]

>>> t _class = Tree(3, [Tree(2,
[Tree(1)]), Tree(4)])

Comparison to ADT

class Tree: def tree(entry, children=[]):
def init (self, entry, return [entry, children]
children=[]):
for ¢ in children: def entry(tree):
assert isinstance(c, Tree) return treel[0]
self.entry = entry
self.children = children def children(tree):
return tree[1l]

>>> t _class = Tree(3, [Tree(2,
[Tree(1)]), Tree(4)])

Comparison to ADT

class Tree: def tree(entry, children=[]):
def init (self, entry, return [entry, children]
children=[1]):
for ¢ in children: def entry(tree):
assert isinstance(c, Tree) return treel[0]
self.entry = entry
self.children = children def children(tree):
return tree[1l]

>>> t _class = Tree(3, [Tree(2,
.. [Tree(1)]), Tree(4)])
>>> t_adt = tree(3, [tree(2,

[tree(1)]), tree(4)]) K/f\\\‘

Comparison to ADT

class Tree: def tree(entry, children=[]):
def init (self, entry, return [entry, children]
children=[1]):
for ¢ in children: def entry(tree):
assert isinstance(c, Tree) return treel[0]
self.entry = entry
self.children = children def children(tree):
return tree[1l]

>>> t _class = Tree(3, [Tree(2,
[Tree(1)]), Tree(4)]) . e

>>> t_adt = tree(3, [tree(2, K//\\\‘

.. [tree(1)]), tree(4)])

2 || +] (@@

| (L

Comparison to ADT

class Tree: def tree(entry, children=[]):
def init (self, entry, return [entry, children]
children=[1]):
for ¢ in children: def entry(tree):
assert isinstance(c, Tree) return treel[0]
self.entry = entry
self.children = children def children(tree):
return tree[1l]

>>> t _class = Tree(3, [Tree(2,
[Tree(1)]), Tree(4)]) . e
>>> t_adt = tree(3, [tree(2,

e [tree(1)]), tree(4)]) K/f\\\‘

>>> t_class.entry == entry(t_adt)

e [[+] @
| (L

Comparison to ADT

class Tree:
def init (self, entry,
children=[1]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

>>> t _class = Tree(3, [Tree(2,

.. [Tree(1)]), Tree(4)])

>>> t_adt = tree(3, [tree(2,

.. [tree(1)]), tree(4)])

>>> t_class.entry == entry(t_adt)

def tree(entry, children=[]):
return [entry, children]

def entry(tree):
return treel[0]

def children(tree):
return tree[1l]

3

VAN

e

Comparison to ADT

class Tree: def tree(entry, children=[]):
def init (self, entry, return [entry, children]
children=[1]):
for ¢ in children: def entry(tree):
assert isinstance(c, Tree) return treel[0]
self.entry = entry
self.children = children def children(tree):
return tree[1l]

>>> t _class = Tree(3, [Tree(2,
[Tree(1)]), Tree(4)]) . e
>>> t_adt = tree(3, [tree(2,

e [tree(1)]), tree(4)]) K/f\\\‘

>>> t_class.entry == entry(t_adt)

Jngolo
IO

Comparison to ADT

class Tree: def tree(entry, children=[]):
def init (self, entry, return [entry, children]
children=[1]):
for ¢ in children: def entry(tree):
assert isinstance(c, Tree) return treel[0]
self.entry = entry
self.children = children def children(tree):
return tree[1l]

>>> t _class = Tree(3, [Tree(2,
[Tree(1)]), Tree(4)]) . e
>>> t_adt = tree(3, [tree(2,

e [tree(1)]), tree(4)]) K/f\\\‘

>>> t_class.entry == entry(t_adt)

True 5 4
>>> t_class.entry = 5 _
INENC

Comparison to ADT

class Tree: def tree(entry, children=[]):
def init (self, entry, return [entry, children]
children=[1]):
for ¢ in children: def entry(tree):
assert isinstance(c, Tree) return treel[0]
self.entry = entry
self.children = children def children(tree):
return tree[1l]

>>> t _class = Tree(3, [Tree(2,
[Tree(1)]), Tree(4)]) . e
>>> t_adt = tree(3, [tree(2,

e [tree(1)]), tree(4)]) //A

>>> t_class.entry == entry(t_adt) \\\

True 4
>>> t_class.entry = 5 _

e

Comparison to ADT

class Tree: def tree(entry, children=[]):
def init (self, entry, return [entry, children]
children=[1]):
for ¢ in children: def entry(tree):
assert isinstance(c, Tree) return treel[0]
self.entry = entry
self.children = children def children(tree):
return tree[1l]

>>> t _class = Tree(3, [Tree(2,
[Tree(1)]), Tree(4)]) - e
>>> t_adt = tree(3, [tree(2,

e [tree(1)]), tree(4)]) //A

>>> t_class.entry == entry(t_adt) \\\

True 4
>>> t_class.entry = 5 _

e

Comparison to ADT

class Tree: def tree(entry, children=[]):
def init (self, entry, return [entry, children]
children=[1]):
for ¢ in children: def entry(tree):
assert isinstance(c, Tree) return treel[0]
self.entry = entry
self.children = children def children(tree):
return tree[1l]

>>> t _class = Tree(3, [Tree(2,

[Tree(1)]), Tree(4)]) . e

>>> t_adt = tree(3, [tree(2,

e [tree(1)]), tree(4)]) K/f\\\‘

>>> t_class.entry == entry(t_adt)

True

>>> t_class.entry = 5 2 4 e °
>>> entry(t_adt) = 5 l

| (L

Comparison to ADT

class Tree: def tree(entry, children=[]):
def init (self, entry, return [entry, children]
children=[1]):
for ¢ in children: def entry(tree):
assert isinstance(c, Tree) return treel[0]
self.entry = entry
self.children = children def children(tree):
return tree[1l]

>>> t _class = Tree(3, [Tree(2,

[Tree(1)]), Tree(4)]) . e

>>> t_adt = tree(3, [tree(2,

e [tree(1)]), tree(4)]) K/f\\\‘

>>> t_class.entry == entry(t_adt)

True

>>> t_class.entry = 5 2 4 e °
>>> entry(t_adt) = 5

SyntaxError: can't assign ... l

| (L

Comparison to ADT

class Tree:
def init (self, entry,

children=[1]):

for ¢ in children:

assert isinstance(c, Tree)

self.entry = entry
self.children = children

>>> t _class = Tree(3, [Tree(2,

.. [Tree(1)]), Tree(4)])

>>> t_adt = tree(3, [tree(2,

.. [tree(1)]), tree(4)])

>>> t_class.entry == entry(t_adt)
True

>>> t_class.entry =5

>>> entry(t_adt) = 5

SyntaxError: can't assign ...

>>> t _class.entry == entry(t_adt)

def tree(entry, children=[]):
return [entry, children]

def entry(tree):
return treel[0]

def children(tree):
return tree[1l]

5 O
| (L

Comparison to ADT

class Tree:
def init (self, entry,

children=[1]):

for ¢ in children:

assert isinstance(c, Tree)

self.entry = entry
self.children = children

>>> t _class = Tree(3, [Tree(2,

.. [Tree(1)]), Tree(4)])

>>> t_adt = tree(3, [tree(2,

.. [tree(1)]), tree(4)])

>>> t_class.entry == entry(t_adt)
True

>>> t_class.entry =5

>>> entry(t_adt) = 5

SyntaxError: can't assign ...

>>> t _class.entry == entry(t_adt)

def tree(entry, children=[]):
return [entry, children]

def entry(tree):
return treel[0]

def children(tree):
return tree[1l]

: (5
/\\
« | (2) (4

e

Comparison to ADT

class Tree:
def init (self, entry,

children=[1]):

for ¢ in children:

assert isinstance(c, Tree)

self.entry = entry
self.children = children

>>> t _class = Tree(3, [Tree(2,

.. [Tree(1)]), Tree(4)])

>>> t_adt = tree(3, [tree(2,

.. [tree(1)]), tree(4)])

>>> t_class.entry == entry(t_adt)
True

>>> t_class.entry =5

>>> entry(t_adt) = 5

SyntaxError: can't assign ...

>>> t _class.entry == entry(t_adt)
False

def tree(entry, children=[]):
return [entry, children]

def entry(tree):
return treel[0]

def children(tree):
return tree[1l]

5 O
| (L

Map

Map

class Tree:

’ Want.to apply a def __init_ (self, entry,
function fn to each children=[]): ...

element In the tree def map(self, fn):

Map

class Tree:
» Want to apply a def __init_ (self, entry,
function fn to each children=[]): ...
element In the tree def map(self, fn):

e Main Ideas

Map

 Want to apply a
function fn to each

element In the tree

e Main Ideas

Apply fn to current
node (mutate tree)

class Tree:

def init (self, entry,
children=[]): ...

def map(self, fn):

Map

 Want to apply a
function fn to each

element In the tree

e Main Ideas

Apply fn to current
node (mutate tree)

Call map on children

class Tree:

def init (self, entry,
children=[]): ...

def map(self, fn):

Map

 Want to apply a
function fn to each

element In the tree

e Main Ideas

Apply fn to current
node (mutate tree)

Call map on children

class Tree:

def init (self, entry,
children=[]): ...

def map(self, fn):
self.entry = fn(self.entry)

Map

 Want to apply a
function fn to each

element In the tree

e Main Ideas

Apply fn to current
node (mutate tree)

Call map on children

class Tree:

def init (self, entry,
children=[]): ...

def map(self, fn):
self.entry = fn(self.entry)

Map

 Want to apply a
function fn to each

element In the tree

e Main Ideas

Apply fn to current
node (mutate tree)

Call map on children

class Tree:

def init (self, entry,
children=[]): ...

def map(self, fn):

self.entry = fn(self.entry)
for ¢ in self.children:

Map

 Want to apply a
function fn to each

element In the tree

e Main Ideas

Apply fn to current
node (mutate tree)

Call map on children

class Tree:

def init (self, entry,
children=[]): ...

def map(self, fn):

self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

Map

 Want to apply a
function fn to each

element In the tree

e Main Ideas

Apply fn to current
node (mutate tree)

Call map on children

class Tree:

def init (self, entry,
children=[]): ...

def map(self, fn):

self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

Map

 Want to apply a
function fn to each

element In the tree

e Main Ideas

Apply fn to current
node (mutate tree)

Call map on children

class Tree:

def init (self, entry,
children=[]): ...

def map(self, fn):

self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

Map

class Tree:
def init (self, entry,
children=[1]):

def map(self, fn):
self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

Map

class Tree:
def init (self, entry,
children=[1]):

def map(self, fn):
self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

>>> square = lambda x: x * X

Map

class Tree:
def init (self, entry,
children=[1]):

def map(self, fn):
self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

>>> square = lambda x: x * X
>»> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])

Map

class Tree:
def init (self, entry,
children=[1]):

def map(self, fn):
self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

>>> square = lambda x: x * X
>»> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.map(square)

Map

class Tree:
def init (self, entry,
children=[1]):

def map(self, fn):
self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

>>> square = lambda x: x * X
>»> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.map(square)

Map

class Tree:
def init (self, entry,
children=[1]):

def map(self, fn):
self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

>>> square = lambda x: x * X
>»> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.map(square)

/\.
l

Map

class Tree:
def init (self, entry,
children=[1]):

def map(self, fn):
self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

>>> square = lambda x: x * X
>»> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.map(square)

/\.
l

Map

class Tree:
def init (self, entry,
children=[1]):

def map(self, fn):
self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

>>> square = lambda x: x * X
>»> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.map(square)

Map

class Tree:
def init (self, entry,
children=[1]):

def map(self, fn):
self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

>>> square = lambda x: x * X
>»> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.map(square)

Map

class Tree:
def init (self, entry,
children=[1]):

def map(self, fn):
self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

>>> square = lambda x: x * X
>»> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.map(square)

/N
l

Map

class Tree:
def init (self, entry,
children=[1]):

def map(self, fn):
self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

>>> square = lambda x: x * X
>»> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.map(square)

9
/\‘
4 16
1

Map

class Tree:
def init (self, entry,
children=[1]):

def map(self, fn):
self.entry = fn(self.entry)
for ¢ in self.children:
c.map(fn)

>>> square = lambda x: x * X
>»> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> t.map(square)

16

Existence

Existence

class Tree:

* Does the tree def __init__ (self, entry,
contain element e? children=[1): ...

def contains (self, e):

Existence

class Tree:

° Does the tree def init (self, entry,
contain element e? children=[1): ...

def contains (self, e):

e Main Ideas

Existence

class Tree:

° Does the tree def init (self, entry,
contain element e? children=[1): ...

def contains (self, e):

e Main Ideas

Check entry of
current node

Existence

class Tree:

° Does the tree def init (self, entry,
contain element e? children=[1): ...

def contains (self, e):

e Main Ideas

Check entry of
current node

Otherwise, check
children

Existence

class Tree:

° Does the tree def init (self, entry,
contain element e? children=[1): ...

def contains (self, e):

e Main Ideas

Check entry of
current node

Otherwise, check
children

» |If no children to
iInvestigate,
return False

Existence

e Does the tree
contain element e?

e Main Ideas

Check entry of
current node

Otherwise, check
children

» |If no children to
iInvestigate,
return False

class Tree:
def init (self, entry,
children=[]): ...

def contains_ (self, e):
if self.entry == e:
return True

Existence

e Does the tree
contain element e?

e Main Ideas

Check entry of
current node

Otherwise, check
children

» |If no children to
iInvestigate,
return False

class Tree:
def init (self, entry,
children=[]): ...

def contains (self, e):
if self.entry == e:
return True

Existence

class Tree:

° Does the tree def init (self, entry,
contain element e? children=[1): ...

def contains (self, e):

e Main ldeas if self.entry == e:

return True
for ¢ in self.children:

Check entry of
current node

Otherwise, check
children

» |If no children to
iInvestigate,
return False

Existence

e Does the tree
contain element e?

e Main Ideas

Check entry of
current node

Otherwise, check
children

» |If no children to
iInvestigate,
return False

class Tree:
def init (self, entry,
children=[]): ...

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if c¢. contains (e):
return True

Existence

e Does the tree
contain element e?

e Main Ideas

Check entry of
current node

Otherwise, check
children

» |If no children to
iInvestigate,
return False

class Tree:
def init (self, entry,
children=[]): ...

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if c¢. contains (e):
return True

Existence

e Does the tree
contain element e?

e Main Ideas

Check entry of
current node

Otherwise, check
children

» |If no children to
iInvestigate,
return False

class Tree:
def init (self, entry,
children=[]): ...

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if c¢. contains (e):
return True
return False

Existence

e Does the tree
contain element e?

e Main Ideas

Check entry of
current node

Otherwise, check
children

» _If no children to
iInvestigate,
return False

class Tree:
def init (self, entry,
children=[]): ...

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if c¢. contains (e):
return True
return False

Existence

e Does the tree
contain element e?

e Main Ideas

Check entry of
current node

Otherwise, check
children

» |If no children to
iInvestigate,
return False

class Tree:
def init (self, entry,
children=[]): ...

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if c¢. contains (e):
return True
return False

Existence

e Does the tree
contain element e?

e Main Ideas

Check entry of
current node

Otherwise, check
children

» |If no children to
iInvestigate,
return False

class Tree:
def init (self, entry,
children=[]): ...

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:
if e in c:

return True
return False

Existence

e Does the tree
contain element e?

e Main Ideas

Check entry of
current node

Otherwise, check
children

» |If no children to
iInvestigate,
return False

class Tree:
def init (self, entry,
children=[]): ...

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:
if e 1n c:

return True
return False

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> 8 in t

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> 8 in t

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> 8 in t

4 —

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> 8 in t

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> 8 in t

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> 8 in t

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> 8 1n t
False

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> 8 1n t

False

>>> 2 1n t

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> 8 1n t

False

>>> 2 1n t

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> 8 1n t

False

>>> 2 1n t

4 —

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> 8 1n t

False

>>> 2 1n t

Existence

class Tree:
def init (self, entry, children=[]):

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>>> t = Tree(3, [Tree(2, [Tree(1l)]), Tree(4)])
>>> 8 1n t

False

>>> 2 1n t

True

Binary Search Tree

Definition

Definition

e Fach node has at most 2
children, left and right

Definition

e Fach node has at most 2
children, left and right

e [eft child elements are all
less than or equal to entry

Definition

Fach node has at most 2
children, left and right

Left child elements are all
less than or equal to entry

Right child elements are
all greater than entry

Definition

e Fach node has at most 2
children, left and right

e | eft child elements are all
less than or equal to entry

* Right child elements are
all greater than entry

* [eft child and right child
are also BSTs

Definition

Fach node has at most 2
children, left and right

Left child elements are all
less than or equal to entry

Right child elements are
all greater than entry

Left child and right child
are also BSTs

Only contains numbers!

Definition

Fach node has at most 2
children, left and right

Left child elements are all
less than or equal to entry

Right child elements are
all greater than entry

Left child and right child
are also BSTs

Only contains numbers!

Definition

Fach node has at most 2
children, left and right

Left child elements are all
less than or equal to entry

Right child elements are
all greater than entry

Left child and right child
are also BSTs

Only contains numbers!

BST!

Definition

Fach node has at most 2
children, left and right

Left child elements are all
less than or equal to entry

Right child elements are
all greater than entry

Left child and right child
are also BSTs

Only contains numbers!

Definition

Fach node has at most 2
children, left and right

Left child elements are all
less than or equal to entry

Right child elements are
all greater than entry

Left child and right child
are also BSTs

Only contains numbers!

Not a BST
8
2 3 5
S\ AN
9 1 6

Definition

Fach node has at most 2
children, left and right

Left child elements are all
less than or equal to entry

Right child elements are
all greater than entry

Left child and right child
are also BSTs

Only contains numbers!

Definition

Fach node has at most 2
children, left and right

Left child elements are all
less than or equal to entry

Right child elements are
all greater than entry

Left child and right child
are also BSTs

Only contains numbers!

Not a BST

/\

LI

6

9 1

VAN

\

Binary Search Tree Class

Binary Search Tree Class

class Tree:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

Binary Search Tree Class

class BST:
def init (self, entry, children=[]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

Binary Search Tree Class

class BST:
empty = ()
def init (self, entry, left=empty, right=empty):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

Binary Search Tree Class

class BST:
empty = ()
def init (self, entry, left=empty, right=empty):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.left, self.right = left, right

Binary Search Tree Class

class BST:
empty = ()
def init (self, entry, left=empty, right=empty):
assert left is BST.empty or isinstance(left, BST)
assert right is BST.empty or isinstance(right, BST)

self.entry = entry
self.left, self.right = left, right

Binary Search Tree Class

class BST:
empty = ()
def init (self, entry, left=empty, right=empty):
assert left is BST.empty or isinstance(left, BST)
assert right is BST.empty or isinstance(right, BST)

self.entry = entry
self.left, self.right = left, right

@property
def max(self): ... # Returns the maximum element in the BST

@property
def min(self): ... # Returns the minimum element in the BST

Binary Search Tree Class

class BST:
empty = ()
def init (self, entry, left=empty, right=empty):
assert left is BST.empty or isinstance(left, BST)
assert right is BST.empty or isinstance(right, BST)

self.entry = entry
self.left, self.right = left, right

if left is not BST.empty:
assert left.max <= entry

if right is not BST.empty:
assert entry < right.min

@property
def max(self): ... # Returns the maximum element in the BST

@property
def min(self): ... # Returns the minimum element in the BST

Binary Search Tree Class

class BST:
empty = ()
def init (self, entry, left=empty, right=empty):
assert left is BST.empty or isinstance(left, BST)
assert right is BST.empty or isinstance(right, BST)

self.entry = entry
self.left, self.right = left, right

if left is not BST.empty:
assert left.max <= entry

if right is not BST.empty:
assert entry < right.min

@property
def max(self): ... # Returns the maximum element in the BST

@property
def min(self): ... # Returns the minimum element in the BST

Existence

Existence

class BST:

 Does the tree def init (self, entry,

contain element e? left=empty, right=empty): ...

def contains (self, e):

e Main Ideas

Check entry of
current node

Otherwise, check
children

» |If no children to
iInvestigate,
return False

Existence

e Does the BST class BST:

def init (self, entry,

contain element e? left=empty, right=empty): ...

def contains (self, e):

e Main Ideas

Check entry of
current node

Otherwise, check
children

» |If no children to
iInvestigate,
return False

Existence

e Does the BST class BST:

def init (self, entry,

contain element e? left=empty, right=empty): ...

def contains (self, e):

e Main Ideas

Check entry of
current node

Otherwise, check
left or right

» |If no children to
iInvestigate,
return False

Existence

e Does the BST class BST:

def init (self, entry,

contain element e? left=empty, right=empty): ...

def contains (self, e):

e Main Ideas

Check entry of
current node

Otherwise, check
left or right

» |If no children to
iInvestigate,
return False

Existence

e Does the BST
contain element e”

e Main Ideas

Check entry of
current node

Otherwise, check
left or right

» |If no children to
iInvestigate,
return False

class BST:
def init (self, entry,

left=empty, right=empty): ...

def contains (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

Existence

e Does the BST

contain element e?

e Main Ideas

Check entry of
current node

Otherwise, check
left or right

4

If no children to
iInvestigate,
return False

class BST:

def

def

__init (self, entry,
left=empty, right=empty):

__contains_ (self, e):
if self.entry == e:
return True
elif e < self.entry and self.left
is not BST.empty:

return e in self.left

elif e > self.entry and self.right
is not BST.empty:

return e in self.right
return False

Existence

e Does the BST

contain element e?

e Main Ideas

Check entry of
current node

Otherwise, check
left or right

4

If no children to
iInvestigate,
return False

class BST:

def

def

__init (self, entry,
left=empty, right=empty):

__contains_ (self, e):
if self.entry == e:
return True
elif e < self.entry and self.left
is not BST.empty:

return e in self.left

elif e > self.entry and self.right
is not BST.empty:

return e in self.right
return False

Existence

e Does the BST class BST:

| def init (self, entry,
contain element e”? left=empty, right=empty):

def contains (self, e):
e Main ldeas if self.entry == e:
return True
elif e < self.entry and self.left
is not BST.empty:
return e in self.left
. elif e > self.entry and self.right
- Otherwise, check isynot BST.emptsz
left or right return e in self.right
return False

- Check entry of
current node

» |If no children to
iInvestigate,
return False

Runtime Comparison

Runtime Comparison

e |s there a difference In
runtime when we check
existence In a tree versus

a BST?

Runtime Comparison

e |[sthere a difference In
runtime when we check

existence In a tree versus
a BST?

e Runtime in terms of n, the
number of nodes

Runtime Comparison

e |[sthere a difference In
runtime when we check

existence In a tree versus
a BST?

e Runtime in terms of n, the
number of nodes

11

13

17

Runtime Comparison

class Tree:

def init (self, entry, children=[]): ...

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

Runtime Comparison

class Tree:

def init (self, entry, children=[]):

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»> t = Tree(7, [Tree(3, [Tree(2),
Tree(5)]), Tree(13,
[Tree(11), Tree(17)])1)

11

13

17

Runtime Comparison

class Tree:

def init (self, entry, children=[]):

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»> t = Tree(7, [Tree(3, [Tree(2),
Tree(5)]), Tree(13,
[Tree(11), Tree(17)])1)
>>> 11 in t

11

13

17

Runtime Comparison

class Tree:

def init (self, entry, children=[]):

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»> t = Tree(7, [Tree(3, [Tree(2),
Tree(5)]), Tree(13,
[Tree(11), Tree(17)])1)
>>> 11 in t

11

13

17

Runtime Comparison

class Tree:

def init (self, entry, children=[]):

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»> t = Tree(7, [Tree(3, [Tree(2),
Tree(5)]), Tree(13,
[Tree(11), Tree(17)])1)
>>> 11 in t

11

13

17

Runtime Comparison

class Tree:

def init (self, entry, children=[]):

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»> t = Tree(7, [Tree(3, [Tree(2),
Tree(5)]), Tree(13,
[Tree(11), Tree(17)])1)
>>> 11 in t

11

13

17

Runtime Comparison

class Tree:

def init (self, entry, children=[]):

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»> t = Tree(7, [Tree(3, [Tree(2),
Tree(5)]), Tree(13,
[Tree(11), Tree(17)])1)
>>> 11 in t

11

13

17

Runtime Comparison

class Tree:

def init (self, entry, children=[]):

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»> t = Tree(7, [Tree(3, [Tree(2),
Tree(5)]), Tree(13,
[Tree(11), Tree(17)])1)
>>> 11 in t

11

13

17

Runtime Comparison

class Tree:

def init (self, entry, children=[]):

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»> t = Tree(7, [Tree(3, [Tree(2),
Tree(5)]), Tree(13,
[Tree(11), Tree(17)])1)
>>> 11 in t

11

13

17

Runtime Comparison

class Tree:

def init (self, entry, children=[]):

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»> t = Tree(7, [Tree(3, [Tree(2),
Tree(5)]), Tree(13,
[Tree(11), Tree(17)])1)
>>> 11 in t

11

13

17

Runtime Comparison

class Tree:

def init (self, entry, children=[]):

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»> t = Tree(7, [Tree(3, [Tree(2),
Tree(5)]), Tree(13,
[Tree(11), Tree(17)])1)
>>> 11 in t

Runtime Comparison

class Tree:

def init (self, entry, children=[]):

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»> t = Tree(7, [Tree(3, [Tree(2),
Tree(5)]), Tree(13,
[Tree(11), Tree(17)])1)
>>> 11 in t

11

13

17

Runtime Comparison

class Tree:

def init (self, entry, children=[]):

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»> t = Tree(7, [Tree(3, [Tree(2),
Tree(5)]), Tree(13,
[Tree(11), Tree(17)])1)

>>> 11 in t

True

11

13

17

Runtime Comparison

class Tree:

def init (self, entry, children=[]):

def contains_ (self, e):
if self.entry == e:
return True
for ¢ in self.children:

if e 1n c:
return True
return False

>»> t = Tree(7, [Tree(3, [Tree(2),
Tree(5)]), Tree(13,
[Tree(11), Tree(17)])1)

>>> 11 in t

True

5 11

O(n)

13

17

Runtime Comparison

class BST:
def init (self, entry, left=empty, right=empty):

def contains_ (self, e):
if self.entry == e:
return True
elif e < self.entry and self.left
is not BST.empty:
return e in self.left
elif e > self.entry and self.right
is not BST.empty:
return e in self.right
return False

Runtime Comparison

class BST:
def init (self, entry, left=empty, right=empty):

def contains_ (self, e):
if self.entry == e:

return True
elif e < self.entry and self.left
is not BST.empty:
return e in self.left 3

elif e > self.entry and self.right
is not BST.empty: x///\\\x

return e in self.right
return False 2 5

11

>>> bst = BST(7,
BST(3, BST(Z), BST(S)),
BST(13, BST(11), BST(17)))

13

17

Runtime Comparison

class BST:
def init (self, entry, left=empty, right=empty):

def contains_ (self, e):
if self.entry == e:

return True
elif e < self.entry and self.left
is not BST.empty:
return e in self.left 3

elif e > self.entry and self.right
is not BST.empty: x///\\\x

return e in self.right
return False 2 5

11

>>> bst = BST(7,

BST(3, BST(2), BST(5)),
. BST(13, BST(11), BST(17)))
>>> 11 1n bst

13

17

Runtime Comparison

class BST:
def init (self, entry, left=empty, right=empty):

def contains_ (self, e):
if self.entry == e:

return True
elif e < self.entry and self.left
is not BST.empty:
return e in self.left 3

elif e > self.entry and self.right
is not BST.empty: x///\\\x

return e in self.right
return False 2 5

11

>>> bst = BST(7,

BST(3, BST(2), BST(5)),
. BST(13, BST(11), BST(17)))
>>> 11 1n bst

13

17

Runtime Comparison

class BST:
def init (self, entry, left=empty, right=empty):

def contains_ (self, e):
if self.entry == e:

return True
elif e < self.entry and self.left ‘/////
is not BST.empty:
return e in self.left 3

elif e > self.entry and self.right
is not BST.empty: x///\\\x

return e in self.right
return False 2 5

11

>>> bst = BST(7,

BST(3, BST(2), BST(5)),
. BST(13, BST(11), BST(17)))
>>> 11 1n bst

13

17

Runtime Comparison

class BST:

def init (self, entry, left=empty, right=empty):

def contains_ (self, e):
if self.entry == e:
return True
elif e < self.entry and self.left
is not BST.empty:
return e in self.left
elif e > self.entry and self.right
is not BST.empty:

return e in self.right
return False

-
3
2 5 11

>>> bst = BST(7,

BST(3, BST(2), BST(5)),
. BST(13, BST(11), BST(17)))
>>> 11 1n bst

13

17

Runtime Comparison

class BST:
def init (self, entry, left=empty, right=empty):

def contains_ (self, e):
if self.entry == e:

return True
elif e < self.entry and self.left |

is not BST.empty:
return e in self.left 3

elif e > self.entry and self.right
is not BST.empty: x///\\\x

return e in self.right
return False 2 5

>>> bst = BST(7,

BST(3, BST(2), BST(5)),
. BST(13, BST(11), BST(17)))
>>> 11 1n bst

Runtime Comparison

class BST:
def init (self, entry, left=empty, right=empty):

def contains_ (self, e):
if self.entry == e:

return True
elif e < self.entry and self.left
is not BST.empty:
return e in self.left 3

elif e > self.entry and self.right
is not BST.empty: x///\\\x

return e in self.right
return False 2 5

11

>>> bst = BST(7,

BST(3, BST(2), BST(5)),
. BST(13, BST(11), BST(17)))
>>> 11 1n bst

13

17

Runtime Comparison

class BST:

def init (self, entry, left=empty, right=empty):

def contains_ (self, e):

>>> bst

>>> 11 in bst

True

if self.entry == e:
return True
elif e < self.entry and self.left
is not BST.empty:
return e in self.left
elif e > self.entry and self.right
is not BST.empty:
return e in self.right
return False

= BST(7,
BST(3, BST(2), BST(5)),
BST(13, BST(11), BST(17)))

11

13

17

Runtime Comparison

class BST:
def init (self, entry, left=empty, right=empty):

def contains_ (self, e): 7
if self.entry == e:
return True
elif e < self.entry and self.left
is not BST.empty:
return e in self.left 3

elif e > self.entry and self.right
is not BST.empty: x///\\\x
return e in self.right

return False 2 5 11

>>> bst = BST(7,

BST(3, BST(2), BST(5)), O(log n)
- BST(13, BST(11), BST(17)))
>>> 11 in bst
True

Summary

Summary

Summary

e [rees created with a class
are mutablel

Summary

e Jrees created with a class
are mutablel

 BSTs allow us to organize
our data in left child and
right child based on value

Summary

e Jrees created with a class
are mutablel

 BSTs allow us to organize
our data in left child and
right child based on value

e BST allows for more efficient
search

Summary

e Jrees created with a class
are mutablel

 BSTs allow us to organize
our data in left child and
right child based on value

e BST allows for more efficient
search

- O(n) in regular tree

Summary

e Jrees created with a class
are mutablel

 BSTs allow us to organize
our data in left child and
right child based on value

e BST allows for more efficient
search

- O(n) in regular tree

- O(log n) in BST

