Lecture 19: Scheme 1

Marvin Zhang
07/25/2016



Announcements



http://cs61a.org/

Roadmap

[Introduction)
[Functions)

Data
@utability]
(@bjects)
(Interpretation)

(Paradigms)
(Applications)




Roadmap

~

Introduction)

Y@

Functions)

~

- This week (Interpretation), the
Data goals are:

@utability]
(@bjects)
(Interpretation)

(Paradigms)
(Applications)




Roadmap

Introduction
Functions

- This week (Interpretation), the
Data goals are:

- To learn a new language, Scheme,

[Mutabilityj in two days!
(@bjects)
(Interpretation)
(%aradigms]

(Applications)




Roadmap

Introduction
Functions

This week (Interpretation), the
Data goals are:

- To learn a new language, Scheme,
[Mutability] in two days!

« To understand how interpreters
(Objects) work, using Scheme as an example
(Interpretation)
(%aradigms]

(Applications)




Scheme



Scheme

Scheme is a dialect of Lisp, the second-oldest language
still used today


http://acronyms.thefreedictionary.com/LISP

Scheme

Scheme is a dialect of Lisp, the second-oldest language
still used today

“If you don't know Lisp, you don't know what it means for a
programming language to be powerful and elegant.”

— Richard Stallman, creator of Emacs


http://acronyms.thefreedictionary.com/LISP

Scheme

Scheme is a dialect of Lisp, the second-oldest language
still used today

“If you don't know Lisp, you don't know what it means for a
programming language to be powerful and elegant.”

— Richard Stallman, creator of Emacs

- “The greatest single programming language ever designed.”

— Alan Kay, co—-creator of 0OOP


http://acronyms.thefreedictionary.com/LISP

Scheme

Scheme is a dialect of Lisp, the second-oldest language
still used today

“If you don't know Lisp, you don't know what it means for a
programming language to be powerful and elegant.”

— Richard Stallman, creator of Emacs

- “The greatest single programming language ever designed.”

— Alan Kay, co—-creator of 0OOP

« Lisp 1s known for 1its simple but powerful syntax, and 1its
ridiculous number of parentheses


http://acronyms.thefreedictionary.com/LISP

Scheme

Scheme is a dialect of Lisp, the second-oldest language
still used today

“If you don't know Lisp, you don't know what it means for a
programming language to be powerful and elegant.”

— Richard Stallman, creator of Emacs

- “The greatest single programming language ever designed.”

— Alan Kay, co—-creator of 0OOP

« Lisp 1s known for 1its simple but powerful syntax, and 1its
ridiculous number of parentheses

« What does Lisp stand for?


http://acronyms.thefreedictionary.com/LISP

Scheme Fundamentals



Scheme Fundamentals

Scheme primitives include numbers, Booleans, and symbols



Scheme Fundamentals

Scheme primitives include numbers, Booleans, and symbols

More on symbols later (for now, they’re like variables)



Scheme Fundamentals

Scheme primitives include numbers, Booleans, and symbols

More on symbols later (for now, they’re like variables)

There are various ways to combine primitives into more
complex expressions



Scheme Fundamentals

Scheme primitives include numbers, Booleans, and symbols

More on symbols later (for now, they’re like variables)

There are various ways to combine primitives into more
complex expressions

Call expressions include an operator followed by zero
or more operands, all surrounded by parentheses



Scheme Fundamentals (demo)

Scheme primitives include numbers, Booleans, and symbols

More on symbols later (for now, they’re like variables)

There are various ways to combine primitives into more
complex expressions

Call expressions include an operator followed by zero
or more operands, all surrounded by parentheses



Scheme Fundamentals (demo)

Scheme primitives include numbers, Booleans, and symbols

More on symbols later (for now, they’re like variables)

There are various ways to combine primitives into more
complex expressions

Call expressions include an operator followed by zero
or more operands, all surrounded by parentheses

scm> (quotient (+ 8 7) 5)
3



Scheme Fundamentals (demo)

Scheme primitives include numbers, Booleans, and symbols

More on symbols later (for now, they’re like variables)

There are various ways to combine primitives into more
complex expressions

Call expressions include an operator followed by zero
or more operands, all surrounded by parentheses

scm> (quotient (+ 8 7) 5) scm> (+ (* 3

3 (+ (* 2 4)
(+ 3 5)))
(+ (- 10 7)

6))
57



Special Forms

Assignment, Symbols, Functions, and Conditionals



Assignment Statements



Assignment Statements

Special forms in Scheme have special orders of evaluation



Assignment Statements

Special forms in Scheme have special orders of evaluation

We can bind symbols to values using define



Assignment Statements

Special forms in Scheme have special orders of evaluation

We can bind symbols to values using define

(define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to



Assignment Statements

Special forms in Scheme have special orders of evaluation

We can bind symbols to values using define

(define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5)



Assignment Statements

Special forms in Scheme have special orders of evaluation

We can bind symbols to values using define

(define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5)
a



Assignment Statements

Special forms in Scheme have special orders of evaluation

We can bind symbols to values using define

(define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5)
a
scm> a



Assignment Statements

Special forms in Scheme have special orders of evaluation

We can bind symbols to values using define

(define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5)
a

scm> a

5



Assignment Statements

Special forms in Scheme have special orders of evaluation

We can bind symbols to values using define

(define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5) scm> (define b (+ a 4))

a
scm> a
5



Assignment Statements

Special forms in Scheme have special orders of evaluation

We can bind symbols to values using define

(define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5) scm> (define b (+ a 4))
a b
scm> a

5



Assignment Statements

Special forms in Scheme have special orders of evaluation

We can bind symbols to values using define

(define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5) scm> (define b (+ a 4))
a b
scm> a scm> b

5



Assignment Statements

Special forms in Scheme have special orders of evaluation

We can bind symbols to values using define

(define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5) scm> (define b (+ a 4))
a b
scm> a scm> b

5 9



Assignment Statements Expressions

Special forms in Scheme have special orders of evaluation

We can bind symbols to values using define

(define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5) scm> (define b (+ a 4))
a b
scm> a scm> b

5 9



Assignment Statements Expressions

Special forms in Scheme have special orders of evaluation

We can bind symbols to values using define

(define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5) scm> (define b (+ a 4))
a b

scm> a scm> b

5 )

Everything in Scheme 1i1s an expression, meaning everything
evaluates to a value



Assignment Statements Expressions

Special forms in Scheme have special orders of evaluation

We can bind symbols to values using define

(define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5) scm> (define b (+ a 4))
a b

scm> a scm> b

5 )

Everything in Scheme 1i1s an expression, meaning everything
evaluates to a value

define expressions evaluate to the symbol that was bound



Symbols and quote



Symbols and quote

Symbols are like variables, they can be bound to values



Symbols and quote

Symbols are like variables, they can be bound to values

However, unlike variables, they also exist on their own
as their own values



Symbols and quote

Symbols are like variables, they can be bound to values

However, unlike variables, they also exist on their own
as their own values

Symbols are like strings and variables all 1in one



Symbols and quote

Symbols are like variables, they can be bound to values

However, unlike variables, they also exist on their own
as their own values

Symbols are like strings and variables all 1in one

We can reference symbols directly, rather than the value
they are bound to, using the quote special form



Symbols and quote

Symbols are like variables, they can be bound to values

However, unlike variables, they also exist on their own
as their own values

Symbols are like strings and variables all 1in one

We can reference symbols directly, rather than the value
they are bound to, using the quote special form

scm> (define a 5)



Symbols and quote

Symbols are like variables, they can be bound to values

However, unlike variables, they also exist on their own
as their own values

Symbols are like strings and variables all 1in one

We can reference symbols directly, rather than the value
they are bound to, using the quote special form

scm> (define a 5)
a



Symbols and quote

Symbols are like variables, they can be bound to values

However, unlike variables, they also exist on their own
as their own values

Symbols are like strings and variables all 1in one

We can reference symbols directly, rather than the value
they are bound to, using the quote special form

scm> (define a 5)
a
scm> a



Symbols and quote

Symbols are like variables, they can be bound to values

However, unlike variables, they also exist on their own
as their own values

Symbols are like strings and variables all 1in one

We can reference symbols directly, rather than the value
they are bound to, using the quote special form

scm> (define a 5)
a

scm> a

5



Symbols and quote

Symbols are like variables, they can be bound to values

However, unlike variables, they also exist on their own
as their own values

Symbols are like strings and variables all 1in one

We can reference symbols directly, rather than the value
they are bound to, using the quote special form

scm> (define a 5) scm> (quote a)
a

scm> a

5



Symbols and quote

Symbols are like variables, they can be bound to values

However, unlike variables, they also exist on their own
as their own values

Symbols are like strings and variables all 1in one

We can reference symbols directly, rather than the value
they are bound to, using the quote special form

scm> (define a 5) scm> (quote a)
a a

scm> a

5



Symbols and quote

Symbols are like variables, they can be bound to values

However, unlike variables, they also exist on their own
as their own values

Symbols are like strings and variables all 1in one

We can reference symbols directly, rather than the value
they are bound to, using the quote special form

scm> (define a 5) scm> (quote a)

a a

scm> a scm> 'a ; shorthand for (quote a)
5



Symbols and quote

Symbols are like variables, they can be bound to values

However, unlike variables, they also exist on their own
as their own values

Symbols are like strings and variables all 1in one

We can reference symbols directly, rather than the value
they are bound to, using the quote special form

scm> (define a 5) scm> (quote a)

a a

scm> a scm> 'a ; shorthand for (quote a)
5 a



Assignment Expressions



Assignment Expressions

define expressions evaluate to the symbol that was bound,
not the value the symbol was bound to



Assignment Expressions

define expressions evaluate to the symbol that was bound,
not the value the symbol was bound to

The side effect of a define expression 1s to bind the
symbol to the value of the expression



Assignment Expressions (demo)

define expressions evaluate to the symbol that was bound,
not the value the symbol was bound to

The side effect of a define expression 1s to bind the
symbol to the value of the expression



Assignment Expressions (demo)

define expressions evaluate to the symbol that was bound,
not the value the symbol was bound to

The side effect of a define expression 1s to bind the
symbol to the value of the expression

scm> (define a 5) scm> (define c (define a 3))
a C

scm> (define b a) scm> a

b 3

scm> b SCm> C

5 a



Lambda Expressions



Lambda Expressions

lambda expressions evaluate to anonymous procedures



Lambda Expressions

lambda expressions evaluate to anonymous procedures

(lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself



Lambda Expressions

lambda expressions evaluate to anonymous procedures

(lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself

We can use the procedure directly as the operator in a
call expression, e.g., ((lambda (x) (* x x)) 4)



Lambda Expressions

- lambda expressions evaluate to anonymous procedures

* (lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself

- We can use the procedure directly as the operator in a
call expression, e.g., ((lambda (x) (* x x)) 4)

operator




Lambda Expressions

- lambda expressions evaluate to anonymous procedures

* (lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself

- We can use the procedure directly as the operator in a
call expression, e.g., ((lambda (x) (* x x)) 4)

operator

operand



Lambda Expressions

- lambda expressions evaluate to anonymous procedures

* (lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself

- We can use the procedure directly as the operator in a
call expression, e.g., ((lambda (x) (* x x)) 4)

operator operand

 More commonly, we can bind it to a symbol using an
assignment, e.g., (define square (lambda (x) (* X X)))



Lambda Expressions

- lambda expressions evaluate to anonymous procedures

* (lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself

- We can use the procedure directly as the operator in a
call expression, e.g., ((lambda (x) (* x x)) 4)

operand

operator

 More commonly, we can bind it to a symbol using an
assignment, e.g., (define square (lambda (x) (* X X)))

« This 1s so common that we have a shorthand for this:
(define (square x) (* x x)) does the exact same thing



Lambda Expressions

- lambda expressions evaluate to anonymous procedures

* (lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself

- We can use the procedure directly as the operator in a
call expression, e.g., ((lambda (x) (* x x)) 4)

operator operand

 More commonly, we can bind it to a symbol using an
assignment, e.g., (define square (lambda (x) (* X X)))

« This 1s so common that we have a shorthand for this:
(define (square x) (* x x)) does the exact same thing

« This looks like a Python def statement, but the
procedure 1t creates 1s still anonymous'



Conditionals and Booleans



Conditionals and Booleans

Conditional expressions come in two types:



Conditionals and Booleans

« Conditional expressions come in two types:

* (if <predicate> <consequent> <alternative>) evaluates
<predicate>, and then evaluates and returns the value of
either <consequent> 0Or <alternative>



Conditionals and Booleans

« Conditional expressions come in two types:

(if <predicate> <consequent> <alternative>) evaluates

<predicate>, and then evaluates and returns the value of
either <consequent> 0Or <alternative>

 We can chain conditionals together similar to Python
if-elif—-else statements using the cond expression



Conditionals and Booleans (demo)

« Conditional expressions come in two types:

* (if <predicate> <consequent> <alternative>) evaluates
<predicate>, and then evaluates and returns the value of
either <consequent> 0Or <alternative>

 We can chain conditionals together similar to Python
if-elif—-else statements using the cond expression



Conditionals and Booleans (demo)

Conditional expressions come in two types:

(if <predicate> <consequent> <alternative>) evaluates

<predicate>, and then evaluates and returns the value of
either <consequent> 0Or <alternative>

We can chain conditionals together similar to Python
if-elif—-else statements using the cond expression

scm> (cond ((= 3 4) 4)
((= 3 3) 0)
(else 'hi))



Conditionals and Booleans (demo)

« Conditional expressions come in two types:

* (if <predicate> <consequent> <alternative>) evaluates
<predicate>, and then evaluates and returns the value of
either <consequent> 0Or <alternative>

 We can chain conditionals together similar to Python
if-elif—-else statements using the cond expression

scm> (cond ((= 3 4) 4)
((= 3 3) 0)
(else 'hi))
0

- Booleans expressions (and <el> .. <en>), (or <el> .. <en>)
short—circuit just like Python Boolean expressions



Conditionals and Booleans (demo)

Conditional expressions come in two types:

(if <predicate> <consequent> <alternative>) evaluates
<predicate>, and then evaluates and returns the value of
either <consequent> 0Or <alternative>

We can chain conditionals together similar to Python
if-elif—-else statements using the cond expression

scm> (cond ((= 3 4) 4)
((= 3 3) 0)

(else 'hi))
0

Booleans expressions (and <el> .. <en>), (or <el> .. <en>)
short—circuit just like Python Boolean expressions

In Scheme, only #f (and false, and False) are false values!



Pairs and Lists

Scheme data structures



Pairs and Lists



Pairs and Lists

Disclaimer: programmers in the 1950s used confusing terms



Pairs and Lists

Disclaimer: programmers in the 1950s used confusing terms

The pair 1s the basic compound value 1n Scheme, and 1is
constructed using a cons expression



Pairs and Lists

« Disclaimer: programmers in the 1950s used confusing terms

« The pair 1s the basic compound value in Scheme, and 1is
constructed using a cons expression

« car selects the first element in a pair, and cdr selects
the second element



Pairs and Lists

Disclaimer: programmers in the 1950s used confusing terms

The pair 1s the basic compound value 1n Scheme, and 1is
constructed using a cons expression

car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))



Pairs and Lists

Disclaimer: programmers in the 1950s used confusing terms

The pair 1s the basic compound value 1n Scheme, and 1is
constructed using a cons expression

car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
X



Pairs and Lists

Disclaimer: programmers in the 1950s used confusing terms

The pair 1s the basic compound value 1n Scheme, and 1is
constructed using a cons expression

car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
X
scm> X



Pairs and Lists

Disclaimer: programmers in the 1950s used confusing terms

The pair 1s the basic compound value 1n Scheme, and 1is
constructed using a cons expression

car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
X

scm> X

(1 . 3)



Pairs and Lists

Disclaimer: programmers in the 1950s used confusing terms

The pair 1s the basic compound value 1n Scheme, and 1is
constructed using a cons expression

car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
X

scm> X

(1 . 3)

scm> (car X)



Pairs and Lists

Disclaimer: programmers in the 1950s used confusing terms

The pair 1s the basic compound value 1n Scheme, and 1is
constructed using a cons expression

car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
X

scm> X

(1 . 3)

scm> (car X)

1



Pairs and Lists

Disclaimer: programmers in the 1950s used confusing terms

The pair 1s the basic compound value 1n Scheme, and 1is
constructed using a cons expression

car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
X

scm> X

(1 . 3)

scm> (car X)

1

scm> (cdr X)



Pairs and Lists

Disclaimer: programmers in the 1950s used confusing terms

The pair 1s the basic compound value 1n Scheme, and 1is
constructed using a cons expression

car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
X

scm> X

(1 . 3)

scm> (car X)

1

scm> (cdr X)

3



Pairs and Lists



Pairs and Lists

The only type of sequence in Scheme 1s the linked list,
which we can create using just pairs!



Pairs and Lists

ne only type of sequence in Scheme is the linked list,
nich we can create using just pairs!

nere 1s also shorthand for creating linked lists using
ne list expression

+—< = o




Pairs and Lists

ne only type of sequence in Scheme is the linked list,
nich we can create using just pairs!

nere 1s also shorthand for creating linked lists using
ne list expression

+—< = o

nil represents the empty list



Pairs and Lists (demo)

ne only type of sequence in Scheme is the linked list,
nich we can create using just pairs!

nere 1s also shorthand for creating linked lists using
ne list expression

+—< = o

nil represents the empty list



Pairs and Lists (demo)

ne only type of sequence in Scheme is the linked list,
nich we can create using just pairs!

nere 1s also shorthand for creating linked lists using
ne list expression

+—< = o

nil represents the empty list

scm> (define x (cons 1 (cons 2 (cons 3 nil))))
X
scm> X ; no dots displayed for well-formed lists

(1 2 3)

scm> (car X) scm> (list 1 2 3) ; shorthand
1 (1 2 3)

scm> (cdr X) scm> '(1 2 3) ; shortest-hand

(2 3) (1 2 3)



Coding Practice



Coding Practice

Let’s implement a procedure (map fn 1lst), where fn 1s a
one—element procedure and 1st is a (linked) 1list



Coding Practice

Let’s implement a procedure (map fn 1lst), where fn 1s a
one—element procedure and 1st is a (linked) 1list

(map fn 1lst) returns a new (linked) list with fn
applied to all of the elements in 1lst



Coding Practice

Let’s implement a procedure (map fn 1lst), where fn 1s a
one—element procedure and 1st is a (linked) 1list

(map fn 1lst) returns a new (linked) list with fn
applied to all of the elements in 1lst

A good way to start these problems 1s to write 1t in
Python first, using linked lists and recursion



Coding Practice

Let’s implement a procedure (map fn 1lst), where fn 1s a
one—element procedure and 1st is a (linked) 1list

(map fn 1lst) returns a new (linked) list with fn
applied to all of the elements in 1lst

A good way to start these problems 1s to write 1t in
Python first, using linked lists and recursion

Usually pretty easy to translate to Scheme afterwards



Coding Practice

Let’s implement a procedure (map fn 1lst), where fn 1s a
one—element procedure and 1st is a (linked) 1list

(map fn 1lst) returns a new (linked) list with fn
applied to all of the elements in 1lst

A good way to start these problems 1s to write 1t in
Python first, using linked lists and recursion

Usually pretty easy to translate to Scheme afterwards

Basic versions of Scheme don’t have iteration!



Coding Practice (demo)

Let’s implement a procedure (map fn 1lst), where fn 1s a
one—element procedure and 1st is a (linked) 1list

(map fn 1lst) returns a new (linked) list with fn
applied to all of the elements in 1lst

A good way to start these problems 1s to write 1t in
Python first, using linked lists and recursion

Usually pretty easy to translate to Scheme afterwards

Basic versions of Scheme don’t have iteration!



Coding Practice (demo)

Let’s implement a procedure (map fn 1lst), where fn 1s a
one—element procedure and 1st is a (linked) 1list

(map fn 1lst) returns a new (linked) list with fn
applied to all of the elements in 1lst

A good way to start these problems 1s to write 1t in
Python first, using linked lists and recursion

Usually pretty easy to translate to Scheme afterwards

Basic versions of Scheme don’t have iteration!

(define (map fn 1st)
(1f (null? 1lst)
nil
(cons (fn (car 1lst)) (map fn (cdr 1lst)))))



More Coding Practice



More Coding Practice

We can create a tree abstraction just like 1n Python:



More Coding Practice

We can create a tree abstraction just like 1n Python:

(define (tree entry children)



More Coding Practice

We can create a tree abstraction just like 1n Python:

(define (tree entry children)
(cons entry children))



More Coding Practice

We can create a tree abstraction just like 1n Python:

(define (tree entry children)
(cons entry children))

(define (entry tree) (car tree))



More Coding Practice

We can create a tree abstraction just like 1n Python:

(define (tree entry children)
(cons entry children))

(define (entry tree) (car tree))

(define (children tree) (cdr tree))



More Coding Practice

We can create a tree abstraction just like 1n Python:

(define (tree entry children)
(cons entry children))

(define (entry tree) (car tree))
(define (children tree) (cdr tree))

(define (leaf? tree)



More Coding Practice

We can create a tree abstraction just like 1n Python:

(define (tree entry children)
(cons entry children))

(define (entry tree) (car tree))
(define (children tree) (cdr tree))

(define (leaf? tree)
(null? (children tree)))



More Coding Practice (demo)

We can create a tree abstraction just like 1n Python:

(define (tree entry children)
(cons entry children))

(define (entry tree) (car tree))
(define (children tree) (cdr tree))

(define (leaf? tree)
(null? (children tree)))



More Coding Practice (demo)

We can create a tree abstraction just like 1n Python:

(define (tree entry children)
(cons entry children))

(define (entry tree) (car tree))
(define (children tree) (cdr tree))

(define (leaf? tree)
(null? (children tree)))

(define (square-tree t)
(tree (square (entry t))
(1f (leaf? t) nil
(map square-tree (children t)))))



Summary



Summary

We learned a new language today! Being able to quickly
pick up new languages 1s important for good programmers



Summary

We learned a new language today! Being able to quickly
pick up new languages 1s important for good programmers

Scheme 1s a simpler language, but still very powerful



Summary

We learned a new language today! Being able to quickly
pick up new languages 1s important for good programmers

Scheme 1s a simpler language, but still very powerful

Everything in Scheme 1s an expression



Summary

We learned a new language today! Being able to quickly
pick up new languages 1s important for good programmers

Scheme 1s a simpler language, but still very powerful
Everything in Scheme 1s an expression

All functions (called procedures) are anonymous



Summary

We learned a new language today! Being able to quickly
pick up new languages 1s important for good programmers

Scheme 1s a simpler language, but still very powerful
Everything in Scheme 1s an expression
All functions (called procedures) are anonymous

Because the only sequence 1s the linked list, we will
solve problems using recursion



Summary

We learned a new language today! Being able to quickly
pick up new languages 1s important for good programmers

Scheme 1s a simpler language, but still very powerful
Everything in Scheme 1s an expression
All functions (called procedures) are anonymous

Because the only sequence 1s the linked list, we will
solve problems using recursion

“How do I master Scheme?” Go practice!



