
Marvin Zhang
07/25/2016

Lecture 19: Scheme I

Announcements

http://cs61a.org/

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Interpretation), the
goals are:

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Interpretation), the
goals are:
• To learn a new language, Scheme,

in two days!

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Interpretation), the
goals are:
• To learn a new language, Scheme,

in two days!
• To understand how interpreters

work, using Scheme as an example

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Scheme

Scheme

• Scheme is a dialect of Lisp, the second-oldest language
still used today

http://acronyms.thefreedictionary.com/LISP

Scheme

• Scheme is a dialect of Lisp, the second-oldest language
still used today

• “If you don't know Lisp, you don't know what it means for a
programming language to be powerful and elegant.”

- Richard Stallman, creator of Emacs

http://acronyms.thefreedictionary.com/LISP

Scheme

• Scheme is a dialect of Lisp, the second-oldest language
still used today

• “If you don't know Lisp, you don't know what it means for a
programming language to be powerful and elegant.”

- Richard Stallman, creator of Emacs

• “The greatest single programming language ever designed.”

- Alan Kay, co-creator of OOP

http://acronyms.thefreedictionary.com/LISP

Scheme

• Scheme is a dialect of Lisp, the second-oldest language
still used today

• “If you don't know Lisp, you don't know what it means for a
programming language to be powerful and elegant.”

- Richard Stallman, creator of Emacs

• “The greatest single programming language ever designed.”

- Alan Kay, co-creator of OOP

• Lisp is known for its simple but powerful syntax, and its
ridiculous number of parentheses

http://acronyms.thefreedictionary.com/LISP

Scheme

• Scheme is a dialect of Lisp, the second-oldest language
still used today

• “If you don't know Lisp, you don't know what it means for a
programming language to be powerful and elegant.”

- Richard Stallman, creator of Emacs

• “The greatest single programming language ever designed.”

- Alan Kay, co-creator of OOP

• Lisp is known for its simple but powerful syntax, and its
ridiculous number of parentheses
• What does Lisp stand for?

http://acronyms.thefreedictionary.com/LISP

Scheme Fundamentals

Scheme Fundamentals

• Scheme primitives include numbers, Booleans, and symbols

Scheme Fundamentals

• Scheme primitives include numbers, Booleans, and symbols
• More on symbols later (for now, they’re like variables)

Scheme Fundamentals

• Scheme primitives include numbers, Booleans, and symbols
• More on symbols later (for now, they’re like variables)

• There are various ways to combine primitives into more
complex expressions

Scheme Fundamentals

• Scheme primitives include numbers, Booleans, and symbols
• More on symbols later (for now, they’re like variables)

• There are various ways to combine primitives into more
complex expressions
• Call expressions include an operator followed by zero

or more operands, all surrounded by parentheses

Scheme Fundamentals

• Scheme primitives include numbers, Booleans, and symbols
• More on symbols later (for now, they’re like variables)

• There are various ways to combine primitives into more
complex expressions
• Call expressions include an operator followed by zero

or more operands, all surrounded by parentheses

(demo)

Scheme Fundamentals

• Scheme primitives include numbers, Booleans, and symbols
• More on symbols later (for now, they’re like variables)

• There are various ways to combine primitives into more
complex expressions
• Call expressions include an operator followed by zero

or more operands, all surrounded by parentheses

scm> (quotient (+ 8 7) 5)
3

(demo)

Scheme Fundamentals

• Scheme primitives include numbers, Booleans, and symbols
• More on symbols later (for now, they’re like variables)

• There are various ways to combine primitives into more
complex expressions
• Call expressions include an operator followed by zero

or more operands, all surrounded by parentheses

scm> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))
57

scm> (quotient (+ 8 7) 5)
3

(demo)

Assignment, Symbols, Functions, and Conditionals

Special Forms

Assignment Statements

Assignment Statements

• Special forms in Scheme have special orders of evaluation

Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

• (define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

• (define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5)

Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

• (define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5)
a

Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

• (define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5)
a
scm> a

Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

• (define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5)
a
scm> a
5

Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

• (define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5)
a
scm> a
5

scm> (define b (+ a 4))

Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

• (define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5)
a
scm> a
5

scm> (define b (+ a 4))
b

Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

• (define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5)
a
scm> a
5

scm> (define b (+ a 4))
b
scm> b

Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

• (define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5)
a
scm> a
5

scm> (define b (+ a 4))
b
scm> b
9

Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

• (define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

scm> (define a 5)
a
scm> a
5

scm> (define b (+ a 4))
b
scm> b
9

Expressions

Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

• (define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

• Everything in Scheme is an expression, meaning everything
evaluates to a value

scm> (define a 5)
a
scm> a
5

scm> (define b (+ a 4))
b
scm> b
9

Expressions

Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

• (define <symbol> <expression>) binds <symbol> to the
value that <expression> evaluates to

• Everything in Scheme is an expression, meaning everything
evaluates to a value

• define expressions evaluate to the symbol that was bound

scm> (define a 5)
a
scm> a
5

scm> (define b (+ a 4))
b
scm> b
9

Expressions

Symbols and quote

Symbols and quote

• Symbols are like variables, they can be bound to values

Symbols and quote

• Symbols are like variables, they can be bound to values
• However, unlike variables, they also exist on their own

as their own values

Symbols and quote

• Symbols are like variables, they can be bound to values
• However, unlike variables, they also exist on their own

as their own values
• Symbols are like strings and variables all in one

Symbols and quote

• Symbols are like variables, they can be bound to values
• However, unlike variables, they also exist on their own

as their own values
• Symbols are like strings and variables all in one
• We can reference symbols directly, rather than the value

they are bound to, using the quote special form

Symbols and quote

• Symbols are like variables, they can be bound to values
• However, unlike variables, they also exist on their own

as their own values
• Symbols are like strings and variables all in one
• We can reference symbols directly, rather than the value

they are bound to, using the quote special form

scm> (define a 5)

Symbols and quote

• Symbols are like variables, they can be bound to values
• However, unlike variables, they also exist on their own

as their own values
• Symbols are like strings and variables all in one
• We can reference symbols directly, rather than the value

they are bound to, using the quote special form

scm> (define a 5)
a

Symbols and quote

• Symbols are like variables, they can be bound to values
• However, unlike variables, they also exist on their own

as their own values
• Symbols are like strings and variables all in one
• We can reference symbols directly, rather than the value

they are bound to, using the quote special form

scm> (define a 5)
a
scm> a

Symbols and quote

• Symbols are like variables, they can be bound to values
• However, unlike variables, they also exist on their own

as their own values
• Symbols are like strings and variables all in one
• We can reference symbols directly, rather than the value

they are bound to, using the quote special form

scm> (define a 5)
a
scm> a
5

Symbols and quote

• Symbols are like variables, they can be bound to values
• However, unlike variables, they also exist on their own

as their own values
• Symbols are like strings and variables all in one
• We can reference symbols directly, rather than the value

they are bound to, using the quote special form

scm> (define a 5)
a
scm> a
5

scm> (quote a)

Symbols and quote

• Symbols are like variables, they can be bound to values
• However, unlike variables, they also exist on their own

as their own values
• Symbols are like strings and variables all in one
• We can reference symbols directly, rather than the value

they are bound to, using the quote special form

scm> (define a 5)
a
scm> a
5

scm> (quote a)
a

Symbols and quote

• Symbols are like variables, they can be bound to values
• However, unlike variables, they also exist on their own

as their own values
• Symbols are like strings and variables all in one
• We can reference symbols directly, rather than the value

they are bound to, using the quote special form

scm> (define a 5)
a
scm> a
5

scm> (quote a)
a
scm> 'a ; shorthand for (quote a)

Symbols and quote

• Symbols are like variables, they can be bound to values
• However, unlike variables, they also exist on their own

as their own values
• Symbols are like strings and variables all in one
• We can reference symbols directly, rather than the value

they are bound to, using the quote special form

scm> (define a 5)
a
scm> a
5

scm> (quote a)
a
scm> 'a ; shorthand for (quote a)
a

Assignment Expressions

Assignment Expressions

• define expressions evaluate to the symbol that was bound,
not the value the symbol was bound to

Assignment Expressions

• define expressions evaluate to the symbol that was bound,
not the value the symbol was bound to

• The side effect of a define expression is to bind the
symbol to the value of the expression

Assignment Expressions

• define expressions evaluate to the symbol that was bound,
not the value the symbol was bound to

• The side effect of a define expression is to bind the
symbol to the value of the expression

(demo)

Assignment Expressions

• define expressions evaluate to the symbol that was bound,
not the value the symbol was bound to

• The side effect of a define expression is to bind the
symbol to the value of the expression

scm> (define a 5)
a
scm> (define b a)
b
scm> b
5

scm> (define c (define a 3))
c
scm> a
3
scm> c
a

(demo)

Lambda Expressions

Lambda Expressions

• lambda expressions evaluate to anonymous procedures

Lambda Expressions

• lambda expressions evaluate to anonymous procedures

• (lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself

Lambda Expressions

• lambda expressions evaluate to anonymous procedures

• (lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself

• We can use the procedure directly as the operator in a
call expression, e.g., ((lambda (x) (* x x)) 4)

Lambda Expressions

• lambda expressions evaluate to anonymous procedures

• (lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself

• We can use the procedure directly as the operator in a
call expression, e.g., ((lambda (x) (* x x)) 4)

operator

Lambda Expressions

• lambda expressions evaluate to anonymous procedures

• (lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself

• We can use the procedure directly as the operator in a
call expression, e.g., ((lambda (x) (* x x)) 4)

operator operand

Lambda Expressions

• lambda expressions evaluate to anonymous procedures

• (lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself

• We can use the procedure directly as the operator in a
call expression, e.g., ((lambda (x) (* x x)) 4)

• More commonly, we can bind it to a symbol using an
assignment, e.g., (define square (lambda (x) (* x x)))

operator operand

Lambda Expressions

• lambda expressions evaluate to anonymous procedures

• (lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself

• We can use the procedure directly as the operator in a
call expression, e.g., ((lambda (x) (* x x)) 4)

• More commonly, we can bind it to a symbol using an
assignment, e.g., (define square (lambda (x) (* x x)))
• This is so common that we have a shorthand for this:

(define (square x) (* x x)) does the exact same thing

operator operand

Lambda Expressions

• lambda expressions evaluate to anonymous procedures

• (lambda (<parameters>) <body>) creates a procedure as
the side effect, and evaluates to the procedure itself

• We can use the procedure directly as the operator in a
call expression, e.g., ((lambda (x) (* x x)) 4)

• More commonly, we can bind it to a symbol using an
assignment, e.g., (define square (lambda (x) (* x x)))
• This is so common that we have a shorthand for this:

(define (square x) (* x x)) does the exact same thing

• This looks like a Python def statement, but the
procedure it creates is still anonymous!

operator operand

Conditionals and Booleans

Conditionals and Booleans

• Conditional expressions come in two types:

Conditionals and Booleans

• Conditional expressions come in two types:
• (if <predicate> <consequent> <alternative>) evaluates

<predicate>, and then evaluates and returns the value of
either <consequent> or <alternative>

Conditionals and Booleans

• Conditional expressions come in two types:
• (if <predicate> <consequent> <alternative>) evaluates

<predicate>, and then evaluates and returns the value of
either <consequent> or <alternative>

• We can chain conditionals together similar to Python 
if-elif-else statements using the cond expression

Conditionals and Booleans

• Conditional expressions come in two types:
• (if <predicate> <consequent> <alternative>) evaluates

<predicate>, and then evaluates and returns the value of
either <consequent> or <alternative>

• We can chain conditionals together similar to Python 
if-elif-else statements using the cond expression

(demo)

Conditionals and Booleans

• Conditional expressions come in two types:
• (if <predicate> <consequent> <alternative>) evaluates

<predicate>, and then evaluates and returns the value of
either <consequent> or <alternative>

• We can chain conditionals together similar to Python 
if-elif-else statements using the cond expression

scm> (cond ((= 3 4) 4)
 ((= 3 3) 0)
 (else 'hi))
0

(demo)

Conditionals and Booleans

• Conditional expressions come in two types:
• (if <predicate> <consequent> <alternative>) evaluates

<predicate>, and then evaluates and returns the value of
either <consequent> or <alternative>

• We can chain conditionals together similar to Python 
if-elif-else statements using the cond expression

• Booleans expressions (and <e1> … <en>), (or <e1> … <en>)
short-circuit just like Python Boolean expressions

scm> (cond ((= 3 4) 4)
 ((= 3 3) 0)
 (else 'hi))
0

(demo)

Conditionals and Booleans

• Conditional expressions come in two types:
• (if <predicate> <consequent> <alternative>) evaluates

<predicate>, and then evaluates and returns the value of
either <consequent> or <alternative>

• We can chain conditionals together similar to Python 
if-elif-else statements using the cond expression

• Booleans expressions (and <e1> … <en>), (or <e1> … <en>)
short-circuit just like Python Boolean expressions

• In Scheme, only #f (and false, and False) are false values!

scm> (cond ((= 3 4) 4)
 ((= 3 3) 0)
 (else 'hi))
0

(demo)

Scheme data structures

Pairs and Lists

Pairs and Lists

Pairs and Lists

• Disclaimer: programmers in the 1950s used confusing terms

Pairs and Lists

• Disclaimer: programmers in the 1950s used confusing terms
• The pair is the basic compound value in Scheme, and is

constructed using a cons expression

Pairs and Lists

• Disclaimer: programmers in the 1950s used confusing terms
• The pair is the basic compound value in Scheme, and is

constructed using a cons expression

• car selects the first element in a pair, and cdr selects
the second element

Pairs and Lists

• Disclaimer: programmers in the 1950s used confusing terms
• The pair is the basic compound value in Scheme, and is

constructed using a cons expression

• car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))

Pairs and Lists

• Disclaimer: programmers in the 1950s used confusing terms
• The pair is the basic compound value in Scheme, and is

constructed using a cons expression

• car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
x

Pairs and Lists

• Disclaimer: programmers in the 1950s used confusing terms
• The pair is the basic compound value in Scheme, and is

constructed using a cons expression

• car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
x
scm> x

Pairs and Lists

• Disclaimer: programmers in the 1950s used confusing terms
• The pair is the basic compound value in Scheme, and is

constructed using a cons expression

• car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
x
scm> x
(1 . 3)

Pairs and Lists

• Disclaimer: programmers in the 1950s used confusing terms
• The pair is the basic compound value in Scheme, and is

constructed using a cons expression

• car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
x
scm> x
(1 . 3)
scm> (car x)

Pairs and Lists

• Disclaimer: programmers in the 1950s used confusing terms
• The pair is the basic compound value in Scheme, and is

constructed using a cons expression

• car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
x
scm> x
(1 . 3)
scm> (car x)
1

Pairs and Lists

• Disclaimer: programmers in the 1950s used confusing terms
• The pair is the basic compound value in Scheme, and is

constructed using a cons expression

• car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
x
scm> x
(1 . 3)
scm> (car x)
1
scm> (cdr x)

Pairs and Lists

• Disclaimer: programmers in the 1950s used confusing terms
• The pair is the basic compound value in Scheme, and is

constructed using a cons expression

• car selects the first element in a pair, and cdr selects
the second element

scm> (define x (cons 1 3))
x
scm> x
(1 . 3)
scm> (car x)
1
scm> (cdr x)
3

Pairs and Lists

Pairs and Lists

• The only type of sequence in Scheme is the linked list,
which we can create using just pairs!

Pairs and Lists

• The only type of sequence in Scheme is the linked list,
which we can create using just pairs!

• There is also shorthand for creating linked lists using
the list expression

Pairs and Lists

• The only type of sequence in Scheme is the linked list,
which we can create using just pairs!

• There is also shorthand for creating linked lists using
the list expression

• nil represents the empty list

Pairs and Lists

• The only type of sequence in Scheme is the linked list,
which we can create using just pairs!

• There is also shorthand for creating linked lists using
the list expression

• nil represents the empty list

(demo)

Pairs and Lists

• The only type of sequence in Scheme is the linked list,
which we can create using just pairs!

• There is also shorthand for creating linked lists using
the list expression

• nil represents the empty list

(demo)

scm> (define x (cons 1 (cons 2 (cons 3 nil))))
x
scm> x ; no dots displayed for well-formed lists
(1 2 3)
scm> (car x)
1
scm> (cdr x)
(2 3)

scm> (list 1 2 3) ; shorthand
(1 2 3)
scm> '(1 2 3) ; shortest-hand
(1 2 3)

Coding Practice

Coding Practice

• Let’s implement a procedure (map fn lst), where fn is a
one-element procedure and lst is a (linked) list

Coding Practice

• Let’s implement a procedure (map fn lst), where fn is a
one-element procedure and lst is a (linked) list

• (map fn lst) returns a new (linked) list with fn
applied to all of the elements in lst

Coding Practice

• Let’s implement a procedure (map fn lst), where fn is a
one-element procedure and lst is a (linked) list

• (map fn lst) returns a new (linked) list with fn
applied to all of the elements in lst

• A good way to start these problems is to write it in
Python first, using linked lists and recursion

Coding Practice

• Let’s implement a procedure (map fn lst), where fn is a
one-element procedure and lst is a (linked) list

• (map fn lst) returns a new (linked) list with fn
applied to all of the elements in lst

• A good way to start these problems is to write it in
Python first, using linked lists and recursion
• Usually pretty easy to translate to Scheme afterwards

Coding Practice

• Let’s implement a procedure (map fn lst), where fn is a
one-element procedure and lst is a (linked) list

• (map fn lst) returns a new (linked) list with fn
applied to all of the elements in lst

• A good way to start these problems is to write it in
Python first, using linked lists and recursion
• Usually pretty easy to translate to Scheme afterwards

• Basic versions of Scheme don’t have iteration!

Coding Practice

• Let’s implement a procedure (map fn lst), where fn is a
one-element procedure and lst is a (linked) list

• (map fn lst) returns a new (linked) list with fn
applied to all of the elements in lst

• A good way to start these problems is to write it in
Python first, using linked lists and recursion
• Usually pretty easy to translate to Scheme afterwards

• Basic versions of Scheme don’t have iteration!

(demo)

Coding Practice

• Let’s implement a procedure (map fn lst), where fn is a
one-element procedure and lst is a (linked) list

• (map fn lst) returns a new (linked) list with fn
applied to all of the elements in lst

• A good way to start these problems is to write it in
Python first, using linked lists and recursion
• Usually pretty easy to translate to Scheme afterwards

• Basic versions of Scheme don’t have iteration!

(demo)

(define (map fn lst)
 (if (null? lst)
 nil
 (cons (fn (car lst)) (map fn (cdr lst)))))

More Coding Practice

More Coding Practice

• We can create a tree abstraction just like in Python:

More Coding Practice

• We can create a tree abstraction just like in Python:
(define (tree entry children)

More Coding Practice

• We can create a tree abstraction just like in Python:
(define (tree entry children)
 (cons entry children))

More Coding Practice

• We can create a tree abstraction just like in Python:
(define (tree entry children)
 (cons entry children))

(define (entry tree) (car tree))

More Coding Practice

• We can create a tree abstraction just like in Python:
(define (tree entry children)
 (cons entry children))

(define (entry tree) (car tree))

(define (children tree) (cdr tree))

More Coding Practice

• We can create a tree abstraction just like in Python:
(define (tree entry children)
 (cons entry children))

(define (entry tree) (car tree))

(define (children tree) (cdr tree))

(define (leaf? tree)

More Coding Practice

• We can create a tree abstraction just like in Python:
(define (tree entry children)
 (cons entry children))

(define (entry tree) (car tree))

(define (children tree) (cdr tree))

(define (leaf? tree)
 (null? (children tree)))

More Coding Practice

• We can create a tree abstraction just like in Python:
(define (tree entry children)
 (cons entry children))

(define (entry tree) (car tree))

(define (children tree) (cdr tree))

(define (leaf? tree)
 (null? (children tree)))

(demo)

More Coding Practice

• We can create a tree abstraction just like in Python:
(define (tree entry children)
 (cons entry children))

(define (entry tree) (car tree))

(define (children tree) (cdr tree))

(define (leaf? tree)
 (null? (children tree)))

(demo)

(define (square-tree t)
 (tree (square (entry t))
 (if (leaf? t) nil
 (map square-tree (children t)))))

Summary

Summary

• We learned a new language today! Being able to quickly
pick up new languages is important for good programmers

Summary

• We learned a new language today! Being able to quickly
pick up new languages is important for good programmers

• Scheme is a simpler language, but still very powerful

Summary

• We learned a new language today! Being able to quickly
pick up new languages is important for good programmers

• Scheme is a simpler language, but still very powerful
• Everything in Scheme is an expression

Summary

• We learned a new language today! Being able to quickly
pick up new languages is important for good programmers

• Scheme is a simpler language, but still very powerful
• Everything in Scheme is an expression
• All functions (called procedures) are anonymous

Summary

• We learned a new language today! Being able to quickly
pick up new languages is important for good programmers

• Scheme is a simpler language, but still very powerful
• Everything in Scheme is an expression
• All functions (called procedures) are anonymous
• Because the only sequence is the linked list, we will

solve problems using recursion

Summary

• We learned a new language today! Being able to quickly
pick up new languages is important for good programmers

• Scheme is a simpler language, but still very powerful
• Everything in Scheme is an expression
• All functions (called procedures) are anonymous
• Because the only sequence is the linked list, we will

solve problems using recursion

• “How do I master Scheme?” Go practice!

