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Roadmap

• This week (Interpretation), the 
goals are:
• To learn a new language, Scheme, 

in two days!
• To understand how interpreters 

work, using Scheme as an example
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Scheme

• Scheme is a dialect of Lisp, the second-oldest language 
still used today

• “If you don't know Lisp, you don't know what it means for a 
programming language to be powerful and elegant.”

- Richard Stallman, creator of Emacs

• “The greatest single programming language ever designed.”

- Alan Kay, co-creator of OOP

• Lisp is known for its simple but powerful syntax, and its 
ridiculous number of parentheses
• What does Lisp stand for?

http://acronyms.thefreedictionary.com/LISP
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Scheme Fundamentals

• Scheme primitives include numbers, Booleans, and symbols
• More on symbols later (for now, they’re like variables)

• There are various ways to combine primitives into more 
complex expressions
• Call expressions include an operator followed by zero 

or more operands, all surrounded by parentheses

scm> (+ (* 3
           (+ (* 2 4)
              (+ 3 5)))
        (+ (- 10 7)
           6))
57

scm> (quotient (+ 8 7) 5)
3

(demo)
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Assignment Statements

• Special forms in Scheme have special orders of evaluation

• We can bind symbols to values using define

• (define <symbol> <expression>) binds <symbol> to the 
value that <expression> evaluates to

• Everything in Scheme is an expression, meaning everything 
evaluates to a value

• define expressions evaluate to the symbol that was bound

scm> (define a 5)
a
scm> a
5

scm> (define b (+ a 4))
b
scm> b
9

Expressions
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Assignment Expressions

• define expressions evaluate to the symbol that was bound, 
not the value the symbol was bound to

• The side effect of a define expression is to bind the 
symbol to the value of the expression

scm> (define a 5)
a
scm> (define b a)
b
scm> b
5

scm> (define c (define a 3))
c
scm> a
3
scm> c
a

(demo)
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Lambda Expressions

• lambda expressions evaluate to anonymous procedures

• (lambda (<parameters>) <body>) creates a procedure as 
the side effect, and evaluates to the procedure itself

• We can use the procedure directly as the operator in a 
call expression, e.g., ((lambda (x) (* x x)) 4)

• More commonly, we can bind it to a symbol using an 
assignment, e.g., (define square (lambda (x) (* x x)))
• This is so common that we have a shorthand for this: 

(define (square x) (* x x)) does the exact same thing

• This looks like a Python def statement, but the 
procedure it creates is still anonymous!

operator operand
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Conditionals and Booleans

• Conditional expressions come in two types:
• (if <predicate> <consequent> <alternative>) evaluates 

<predicate>, and then evaluates and returns the value of 
either <consequent> or <alternative>

• We can chain conditionals together similar to Python 
if-elif-else statements using the cond expression

• Booleans expressions (and <e1> … <en>), (or <e1> … <en>) 
short-circuit just like Python Boolean expressions

• In Scheme, only #f (and false, and False) are false values!

scm> (cond ((= 3 4) 4)
           ((= 3 3) 0)
           (else 'hi))
0

(demo)
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Pairs and Lists

• Disclaimer: programmers in the 1950s used confusing terms
• The pair is the basic compound value in Scheme, and is 

constructed using a cons expression

• car selects the first element in a pair, and cdr selects 
the second element

scm> (define x (cons 1 3))
x
scm> x
(1 . 3)
scm> (car x)
1
scm> (cdr x)
3
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Pairs and Lists

• The only type of sequence in Scheme is the linked list, 
which we can create using just pairs!

• There is also shorthand for creating linked lists using 
the list expression

• nil represents the empty list

(demo)

scm> (define x (cons 1 (cons 2 (cons 3 nil))))
x
scm> x  ; no dots displayed for well-formed lists
(1 2 3)
scm> (car x)
1
scm> (cdr x)
(2 3)

scm> (list 1 2 3)  ; shorthand
(1 2 3)
scm> '(1 2 3)  ; shortest-hand
(1 2 3)
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• Let’s implement a procedure (map fn lst), where fn is a 
one-element procedure and lst is a (linked) list

• (map fn lst) returns a new (linked) list with fn 
applied to all of the elements in lst

• A good way to start these problems is to write it in 
Python first, using linked lists and recursion
• Usually pretty easy to translate to Scheme afterwards

• Basic versions of Scheme don’t have iteration!

(demo)

(define (map fn lst)
  (if (null? lst)
      nil
      (cons (fn (car lst)) (map fn (cdr lst)))))
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More Coding Practice

• We can create a tree abstraction just like in Python:
(define (tree entry children)
  (cons entry children))

(define (entry tree) (car tree))

(define (children tree) (cdr tree))

(define (leaf? tree)
  (null? (children tree)))

(demo)

(define (square-tree t)
  (tree (square (entry t))
        (if (leaf? t) nil
            (map square-tree (children t)))))
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Summary

• We learned a new language today! Being able to quickly 
pick up new languages is important for good programmers

• Scheme is a simpler language, but still very powerful
• Everything in Scheme is an expression
• All functions (called procedures) are anonymous
• Because the only sequence is the linked list, we will 

solve problems using recursion

• “How do I master Scheme?” Go practice!


