Lecture 20: Scheme II

Brian Hou
July 26, 2016

Announcements

Announcements

- Project 3 is due today (7/26)

Announcements

- Project 3 is due today (7/26)
- Homework 8 is due tomorrow (7/27)

Announcements

- Project 3 is due today (7/26)
- Homework 8 is due tomorrow (7/27)
- Quiz 7 on Thursday (7/28) at the beginning of lecture

Announcements

- Project 3 is due today (7/26)
- Homework 8 is due tomorrow (7/27)
- Quiz 7 on Thursday (7/28) at the beginning of lecture
- May cover mutable linked lists, mutable trees, or Scheme I

Announcements

- Project 3 is due today (7/26)
- Homework 8 is due tomorrow (7/27)
- Quiz 7 on Thursday (7/28) at the beginning of lecture
- May cover mutable linked lists, mutable trees, or Scheme I
- Opportunities to earn back points

Announcements

- Project 3 is due today (7/26)
- Homework 8 is due tomorrow (7/27)
- Quiz 7 on Thursday (7/28) at the beginning of lecture
- May cover mutable linked lists, mutable trees, or Scheme I
- Opportunities to earn back points
- Hog composition revisions due tomorrow (7/27)

Announcements

- Project 3 is due today (7/26)
- Homework 8 is due tomorrow (7/27)
- Quiz 7 on Thursday (7/28) at the beginning of lecture
- May cover mutable linked lists, mutable trees, or Scheme I
- Opportunities to earn back points
- Hog composition revisions due tomorrow (7/27)
- Maps composition revisions due Saturday (7/30)

Announcements

- Project 3 is due today (7/26)
- Homework 8 is due tomorrow (7/27)
- Quiz 7 on Thursday (7/28) at the beginning of lecture
- May cover mutable linked lists, mutable trees, or Scheme I
- Opportunities to earn back points
- Hog composition revisions due tomorrow (7/27)
- Maps composition revisions due Saturday (7/30)
- Homework 7 AutoStyle portion due tomorrow (7/27)

Roadmap

Introduction

Functions
Data
Mutability
Objects
Interpretation
Paradigms
Applications

Roadmap

Introduction

Functions
Data

- This week (Interpretation), the goals are:

Mutability
Objects
Interpretation
Paradigms
Applications

Roadmap

Introduction

Functions

Data
Mutability

- This week (Interpretation), the goals are:
- To learn a new language, Scheme, in two days!

Objects
Interpretation
Paradigms
Applications

Roadmap

Introduction

Functions

Data

Mutability
Objects
Interpretation
Paradigms
Applications

- This week (Interpretation), the goals are:
- To learn a new language, Scheme, in two days!
- To understand how interpreters work, using Scheme as an example

The let Special Form

The let Special Form

- The let special form defines local variables and evaluates expressions in this new environment

The let Special Form

- The let special form defines local variables and evaluates expressions in this new environment

The let Special Form

- The let special form defines local variables and evaluates expressions in this new environment

```
scm> (define x l)
x
scm> (let ((x 10) (y 20))
    (+ x y))
30
Scm> x
1
```


Tail Recursion

Factorial (Again)

Factorial (Again)
(define (fact n)

Factorial (Again)
(define (fact n)
(if (= n 0)

Factorial (Again)
(define (fact n)
(if (= n 0)
1

Factorial (Again)

```
(define (fact n)
    (if (= n 0)
    1
    (* n (fact (- n 1)))))
```


Factorial (Again)

```
(define (fact n)
    (if (= n 0)
    1
    (* n (fact (- n 1)))))
```


Factorial (Again)

```
(define (fact n)
    (if (= n 0)
    1
    (* n (fact (- n 1)))))
```

 scm> (fact 10)
 scm> (fact 1000)

Factorial (Again)

```
(define (fact n) (define (fact n)
    (if (= n 0)
    1
    (* n (fact (- n 1)))))
```

scm> (fact 10)
scm> (fact 1000)

Factorial (Again)

```
(define (fact n)
    (define (fact n)
    (define (helper n prod)
    (if (= n 0)
    1
    (* n (fact (- n 1)))))
```

scm> (fact 10)
scm> (fact 1000)

Factorial (Again)

```
(define (fact n)
    (if (= n 0)
    1
    (define (fact n)
    (define (helper n prod)
    (if (= n 0)
    (* n (fact (- n 1)))))
```

scm> (fact 10)
scm> (fact 1000)

Factorial (Again)

(define (fact n)

(if (= n 0)
 1

(* n (fact (- n 1)))))
(define (fact n)
(define (helper n prod)

$$
\begin{gathered}
\text { (if }(=n 0) \\
\text { prod }
\end{gathered}
$$

scm> (fact 10)
scm> (fact 1000)

Factorial (Again)

```
(define (fact n)
    (if (= n 0)
    1
    (* n (fact (- n 1)))))
```

 (define (fact n)
 (define (helper n prod)
 $$
\begin{aligned}
& \text { (if }(=\mathrm{n} 0) \\
& \quad \text { prod } \\
& \quad(\text { helper }(-\mathrm{n} 1) \quad(* \mathrm{n} \text { prod }))))
\end{aligned}
$$

scm> (fact 10)
scm> (fact 1000)

Factorial (Again)

```
(define (fact n)
    (if (= n 0)
    1
    (* n (fact (- n 1)))))
```

 (define (fact n)
 (define (helper n prod)
 (if (= n 0)
 prod
(helper (- n 1) (* n prod))))
(helper n 1))
scm> (fact 10)
scm> (fact 1000)

Factorial (Again)

(define (fact n)

(if (= n 0)
 1

(* $\mathrm{n}(f a c t(-\mathrm{n} 1))))$
(define (fact n)
(define (helper n prod)

$$
\begin{aligned}
& \quad(\text { if }(=\mathrm{n} 0) \\
& \quad \text { prod } \\
& \quad(\text { helper }(-\mathrm{n} 1)(* \mathrm{n} \text { prod })))) \\
& (\text { helper } \mathrm{n} 1))
\end{aligned}
$$

Tail Recursion

Tail Recursion

The Revised7 Report on the Algorithmic Language Scheme:

Tail Recursion

The Revised7 Report on the Algorithmic Language Scheme:
"Implementations of Scheme are required to be properly tail-recursive. This allows the execution of an iterative computation in constant space, even if the iterative computation is described by a syntactically recursive procedure."

Tail Recursion

The Revised7 Report on the Algorithmic Language Scheme:
"Implementations of Scheme are required to be properly tail-recursive. This allows the execution of an iterative computation in constant space, even if the iterative computation is described by a syntactically recursive procedure."

```
(define (fact n)
    (define (helper n prod)
    (if (= n 0) prod (helper (- n 1) (* n prod))))
    (helper n 1))
```


Tail Recursion

The Revised ${ }^{7}$ Report on the Algorithmic Language Scheme:
"Implementations of Scheme are required to be properly tail-recursive. This allows the execution of an iterative computation in constant space, even if the iterative computation is described by a syntactically recursive procedure."

How? Eliminate the middleman!

(define (fact n)
(define (helper n prod)
(if (= n 0) prod (helper (- n 1) (* n prod))))
(helper n 1))

Tail Calls

Tail Calls

- A procedure call that has not yet returned is active

Tail Calls

- A procedure call that has not yet returned is active
- Some procedure calls are tail calls

Tail Calls

- A procedure call that has not yet returned is active
- Some procedure calls are tail calls
- Scheme implementations should support an unbounded number of active tail calls using only a constant amount of space

Tail Calls

- A procedure call that has not yet returned is active
- Some procedure calls are tail calls
- Scheme implementations should support an unbounded number of active tail calls using only a constant amount of space
- A tail call is a call expression in a tail context:

Tail Calls

- A procedure call that has not yet returned is active
- Some procedure calls are tail calls
- Scheme implementations should support an unbounded number of active tail calls using only a constant amount of space
- A tail call is a call expression in a tail context:
- The last body sub-expression in a lambda

Tail Calls

- A procedure call that has not yet returned is active
- Some procedure calls are tail calls
- Scheme implementations should support an unbounded number of active tail calls using only a constant amount of space
- A tail call is a call expression in a tail context:
- The last body sub-expression in a lambda
- The consequent and alternative in a tail context if

Tail Calls

- A procedure call that has not yet returned is active
- Some procedure calls are tail calls
- Scheme implementations should support an unbounded number of active tail calls using only a constant amount of space
- A tail call is a call expression in a tail context:
- The last body sub-expression in a lambda
- The consequent and alternative in a tail context if
- All non-predicate sub-expressions in a tail context cond

Tail Calls

- A procedure call that has not yet returned is active
- Some procedure calls are tail calls
- Scheme implementations should support an unbounded number of active tail calls using only a constant amount of space
- A tail call is a call expression in a tail context:
- The last body sub-expression in a lambda
- The consequent and alternative in a tail context if
- All non-predicate sub-expressions in a tail context cond
- The last sub-expression in a tail context and, or, begin, or let

Tail Contexts

- A tail call is a call expression in a tail context:
- The last body sub-expression in a lambda
- The consequent and alternative in a tail context if
- All non-predicate sub-expressions in a tail context cond
- The last sub-expression in a tail context and, or, begin, or let

```
(define (fact n)
    (define (helper n prod)
        (if (= n 0) prod (helper (- n 1) (* n prod))))
    (helper n 1))
```


Tail Contexts

- A tail call is a call expression in a tail context:
- The last body sub-expression in a lambda
- The consequent and alternative in a tail context if
- All non-predicate sub-expressions in a tail context cond
- The last sub-expression in a tail context and, or, begin, or let

```
(define (fact n)
    (define (helper n prod)
        (if (= n 0) prod (helper (- n 1) (* n prod))))
    (helper n 1))
```


Tail Contexts

- A tail call is a call expression in a tail context:
- The last body sub-expression in a lambda
- The consequent and alternative in a tail context if
- All non-predicate sub-expressions in a tail context cond
- The last sub-expression in a tail context and, or, begin, or let

```
(define (fact n)
    (define (helper n prod)
    (if (= n 0) prod (helper (- n 1) (* n prod))) )
    (helpern1)
```


Tail Contexts

- A tail call is a call expression in a tail context:
- The last body sub-expression in a lambda
- The consequent and alternative in a tail context if
- All non-predicate sub-expressions in a tail context cond
- The last sub-expression in a tail context and, or, begin, or let

```
(define (fact n)
    (define (helper n prod)
    (if \((=\mathrm{n} 0) \operatorname{prod}(\operatorname{helper}(-\mathrm{n} 1)(* \mathrm{n} \operatorname{prod}))))^{\prime}\)
    (helpern1)
```


Tail Contexts

- A tail call is a call expression in a tail context:
- The last body sub-expression in a lambda
- The consequent and alternative in a tail context if
- All non-predicate sub-expressions in a tail context cond
- The last sub-expression in a tail context and, or, begin, or let

```
(define (fact n)
    (define (helper n prod)
    (if (= n 0) prod (helper (-n 1) (* \((-\mathrm{prod}))\) ))
    (helpern1)
```


Example: Length

Example: Length

(define (length s)

Example: Length

(define (length s)
(if (null? s) 0

Example: Length

(define (length s)

(if (null? s) 0
$(+1(l e n g t h(c d r s))))$

Example: Length

```
(define (length s)
    (if (null? s) 0
    (+ 1 (length (cdr s))))!')
```


Example: Length

```
(define (length s)
    '(if (null? s) 0
    (+ 1 (length (cdr s)) )!,!)
```


Example: Length

```
(define (length s)
    i(if (null? s) 0
```


Example: Length

(define (length s)
i(if (null? s) 0
Not a tail context

Example: Length

(define (length s)
Not a tail context

- A call expression is not a tail call if more computation is still required in the calling procedure

Example: Length

```
(define (length s)
    (if (null? s) 0
    (+ 1!(length (cdr s) )!,!)!')
```


Not a tail context

- A call expression is not a tail call if more computation is still required in the calling procedure
- Linear recursive procedures can often be rewritten to use tail calls

Example: Length

```
(define (length s)
    (if (null? s) 0
    (+ 1 I'(length (cdr s) (!)!!!'!
```


Not a tail context

- A call expression is not a tail call if more computation is still required in the calling procedure
- Linear recursive procedures can often be rewritten to use tail calls
(define (length-tail s)

Example: Length

```
(define (length s)
    (if (null? s) 0
    (+ 1 1(length (cdr s) (),!)!'!
```


Not a tail context

- A call expression is not a tail call if more computation is still required in the calling procedure
- Linear recursive procedures can often be rewritten to use tail calls
(define (length-tail s)
(define (length-iter s n)

Example: Length

```
(define (length s)
    '(if (null? s) 0
```


Not a tail context

- A call expression is not a tail call if more computation is still required in the calling procedure
- Linear recursive procedures can often be rewritten to use tail calls
(define (length-tail s)
(define (length-iter s n)
(if (null? s) n

Example: Length

(define (length s)

Not a tail context

- A call expression is not a tail call if more computation is still required in the calling procedure
- Linear recursive procedures can often be rewritten to use tail calls
(define (length-tail s)
(define (length-iter s n)
(if (null? s) n
(length-iter (cdr s) (+ 1 n))))

Example: Length

(define (length s)

Not a tail context

- A call expression is not a tail call if more computation is still required in the calling procedure
- Linear recursive procedures can often be rewritten to use tail calls

```
(define (length-tail s)
    (define (length-iter s n)
    (if (null? s) n
    (length-iter (cdr s) (+ 1 n))))
    (length-iter s 0))
```


Example: Length

(define (length s)
(if (null? s) 0
(+ 1 i(length (cdr s) $\left.\left.\left.)_{0}^{1}\right)_{!}^{\prime}\right)_{i}^{\prime}\right)$

Not a tail context

- A call expression is not a tail call if more computation is still required in the calling procedure
- Linear recursive procedures can often be rewritten to use tail calls

```
(define (length-tail s)
    (define (length-iter s n)
    (if (null? s) n
    (length-iter (cdr s) (+ 1 n))))
    :( length-iter s 0)',
```


Example: Length

(define (length s)
(if (null? s) 0
$\left(+11_{1}^{\prime}(\right.$ length (cdr s))!!!!!!

Not a tail context

- A call expression is not a tail call if more computation is still required in the calling procedure
- Linear recursive procedures can often be rewritten to use tail calls

```
(define (length-tail s)
    (define (length-iter s n)
    (if (null? s) n
    (length-iter (cdr s) (+ 1 n)))
    "(length-iter s 0)!')
```


Example: Length

(define (length s)
(if (null? s) 0
(+ 1 i(length (cdr s) $\left.\left.\left.)_{0}^{1}\right)_{!}^{1}\right)_{i}^{\prime}\right)$

Not a tail context

- A call expression is not a tail call if more computation is still required in the calling procedure
- Linear recursive procedures can often be rewritten to use tail calls

```
(define (length-tail s)
    (define (length-iter s n)
    (if (null? s) n
        length-iter (cdr s) (+ 1 n) )
    !( length-iter s 0)!
```


Lazy Computation

Lazy Computation

Lazy Computation

- Lazy computation means that computation of a value is delayed until that value is needed

Lazy Computation

- Lazy computation means that computation of a value is delayed until that value is needed
- In other words, values are computed on demand

Lazy Computation

- Lazy computation means that computation of a value is delayed until that value is needed
- In other words, values are computed on demand

Lazy Computation

- Lazy computation means that computation of a value is delayed until that value is needed
- In other words, values are computed on demand

```
>>> r = range(11111, 1111111111)
>>> r[20149616]
20160726
```

Streams

Streams

- Streams are lazy Scheme lists: the rest of a list is computed only when needed

Streams

- Streams are lazy Scheme lists: the rest of a list is computed only when needed
(car (cons 1 2)) -> 1

Streams

- Streams are lazy Scheme lists: the rest of a list is computed only when needed
(car (cons 1 2)) -> 1
$(c d r(c o n s 12)) \rightarrow 2$

Streams

- Streams are lazy Scheme lists: the rest of a list is computed only when needed
(car (cons 1 2)) -> 1
$(c d r(c o n s 12)) \rightarrow 2$
(cons 1 (cons 2 nil))

Streams

- Streams are lazy Scheme lists: the rest of a list is computed only when needed
(car (cons 1 2)) -> 1
(cdr (cons 1 2)) -> 2
(cons 1 (cons 2 nil))

Streams

- Streams are lazy Scheme lists: the rest of a list is computed only when needed

(car (cons 1 2)) -> 1	(car (cons-stream 1 2)) -> 1
(cdr (cons 1 2)) -> 2	
(cons 1 (cons 2 nil))	

Streams

- Streams are lazy Scheme lists: the rest of a list is computed only when needed

(car (cons 1 2)) -> 1	(car (cons-stream 1 2)) -> 1
(cdr (cons 12)) -> 2	(cdr-stream (cons-stream 1 2)) -> 2
(cons 1 (cons 2 nil))	

Streams

- Streams are lazy Scheme lists: the rest of a list is computed only when needed

1 2)) -> 1	(car (cons-stream 1 2)) -> 1
dr (cons 1 2)) -> 2	(cdr-stream (cons-stream 1 2)) -> 2
ons 1 (cons 2 nil))	(cons-stream 1 (cons-stream 2 nil))

Streams

- Streams are lazy Scheme lists: the rest of a list is computed only when needed
- Errors only occur when expressions are evaluated

Streams

- Streams are lazy Scheme lists: the rest of a list is computed only when needed
- Errors only occur when expressions are evaluated
(cons-stream 1 (/ 10$)$) -> (1 . \#[promise (not forced)])

Streams

- Streams are lazy Scheme lists: the rest of a list is computed only when needed
- Errors only occur when expressions are evaluated
(cons-stream 1 (/ 1 0)) -> (1 . \#[promise (not forced)])
(car (cons-stream 1 (/ 1 0))) -> 1

Streams

- Streams are lazy Scheme lists: the rest of a list is computed only when needed
- Errors only occur when expressions are evaluated
(cons-stream 1 (/ 1 0)) -> (1 . \#[promise (not forced)])
(car (cons-stream 1 (/ 10$)$)) -> 1
(cdr-stream (cons-stream 1 (/ 10$)$)) -> ERROR

Streams

- Streams are lazy Scheme lists: the rest of a list is computed only when needed
- Errors only occur when expressions are evaluated
(cons-stream 1 (/ 1 0)) -> (1 . \#[promise (not forced)])
(car (cons-stream 1 (/ 10$)$)) -> 1
(cdr-stream (cons-stream 1 (/ 1 0))) -> ERROR

Infinite Streams

Infinite Streams

- An integer stream is a stream of consecutive integers

Infinite Streams

- An integer stream is a stream of consecutive integers
- The rest of the stream is not computed when the stream is created

Infinite Streams

- An integer stream is a stream of consecutive integers
- The rest of the stream is not computed when the stream is created
(define (int-stream start)

Infinite Streams

- An integer stream is a stream of consecutive integers
- The rest of the stream is not computed when the stream is created

```
(define (int-stream start)
    (cons-stream
```


Infinite Streams

- An integer stream is a stream of consecutive integers
- The rest of the stream is not computed when the stream is created

```
(define (int-stream start)
    (cons-stream
    start
```


Infinite Streams

- An integer stream is a stream of consecutive integers
- The rest of the stream is not computed when the stream is created

```
(define (int-stream start)
    (cons-stream
    start
    (int-stream (+ start 1))))
```


Infinite Streams

- An integer stream is a stream of consecutive integers
- The rest of the stream is not computed when the stream is created

```
(define (int-stream start)
    (cons-stream
    start
    (int-stream (+ start 1))))
```


Recursively Defined Streams

Recursively Defined Streams

(define ones (cons-stream 1 ones))

Recursively Defined Streams

(define ones (cons-stream 1 ones))

$$
\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & \ldots
\end{array}
$$

Recursively Defined Streams

(define ones (cons-stream 1 ones))

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)
(cons-stream

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

(define ints

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

```
(cons-stream
\[
(+(\operatorname{car} \operatorname{s1})(\operatorname{car} \text { s2)) }
\]
\[
1 \text { 1 } 1 \text { 1 } 1 \text { 1 } 1
\]
(add-streams
(cdr-stream s1)
\[
(\text { cdr-stream s2)))) }
\]
```

(define ints
(cons-stream 1

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

```
(cons-stream
\[
\begin{array}{l|llllllll}
1 & 1 & 1 & 1 & 1 & 1 & \cdots
\end{array}
\]
\[
(+(\text { car s1) (car s2)) }
\]
(add-streams
(cdr-stream s1)
\[
(\text { (cdr-stream s2)))) }
\]
```

(define ints
(cons-stream 1
(add-streams ones ints)))

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

```
(cons-stream
\[
(+(\text { car s1) (car s2)) }
\]
(add-streams
(cdr-stream s1)
\[
(\text { (cdr-stream s2)))) }
\]
```

(define ints
(cons-stream 1
(add-streams ones ints)))

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

(add-streams ones ints)))

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

(add-streams ones ints)))

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

$$
\begin{aligned}
& \text { (cons-stream } \\
& \qquad \begin{array}{l}
(+(\text { car s1) (car s2)) } \\
(\text { add-streams } \\
\quad(\text { cdr-stream s1) } \\
\quad(\text { cdr-stream s2)))) }
\end{array}
\end{aligned}
$$

(define ints
(cons-stream 1
12
(add-streams ones ints)))

Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

$$
\begin{aligned}
& \text { (cons-stream } \\
& \qquad \begin{array}{l}
(+(\text { car s1) (car s2)) } \\
(\text { add-streams } \\
\quad(\text { cdr-stream s1) } \\
\quad(\text { cdr-stream } \mathrm{s} 2))))
\end{array}
\end{aligned}
$$

(define ints

```
(cons-stream 1
1
    (add-streams ones ints)))
```


Recursively Defined Streams

(define ones (cons-stream 1 ones))
(define (add-streams s1 s2)

$$
\begin{aligned}
& \text { (cons-stream } \\
& \qquad \begin{array}{l}
(+(\text { car s1) (car s2)) } \\
(\text { add-streams } \\
\quad(\text { cdr-stream s1) } \\
\quad(\text { cdr-stream s2)))) }
\end{array}
\end{aligned}
$$

(define ints

```
(cons-stream 1
1
    (add-streams ones ints)))
```


A Stream of Primes

A Stream of Primes

- For a prime k, any larger prime cannot be divisible by k

A Stream of Primes

- For a prime k, any larger prime cannot be divisible by k
- Idea: Filter out all numbers that are divisible by k

A Stream of Primes

- For a prime k, any larger prime cannot be divisible by k
- Idea: Filter out all numbers that are divisible by k
- This idea is called the Sieve of Eratosthenes

A Stream of Primes

- For a prime k, any larger prime cannot be divisible by k
- Idea: Filter out all numbers that are divisible by k
- This idea is called the Sieve of Eratosthenes

$$
2,3,4,5,6,7,8,9,10,11,12,13
$$

A Stream of Primes

- For a prime k, any larger prime cannot be divisible by k
- Idea: Filter out all numbers that are divisible by k
- This idea is called the Sieve of Eratosthenes

$$
2,3,4,5,6,7,8,9,10,11,12,13
$$

A Stream of Primes

- For a prime k, any larger prime cannot be divisible by k
- Idea: Filter out all numbers that are divisible by k
- This idea is called the Sieve of Eratosthenes

A Stream of Primes

- For a prime k, any larger prime cannot be divisible by k
- Idea: Filter out all numbers that are divisible by k
- This idea is called the Sieve of Eratosthenes

$$
2,3,4,5, h, 7,2,9,10,11,12,13
$$

A Stream of Primes

- For a prime k, any larger prime cannot be divisible by k
- Idea: Filter out all numbers that are divisible by k
- This idea is called the Sieve of Eratosthenes

$$
2,3,4,5, h, 7,2, b, 10,11,12,13
$$

A Stream of Primes

- For a prime k, any larger prime cannot be divisible by k
- Idea: Filter out all numbers that are divisible by k
- This idea is called the Sieve of Eratosthenes

$$
2,3,4,5,6,7,8,6,10,11,12,13
$$

A Stream of Primes

- For a prime k, any larger prime cannot be divisible by k
- Idea: Filter out all numbers that are divisible by k
- This idea is called the Sieve of Eratosthenes

$$
2,3,4,5, h, 7,2, b, 10,11,12,13
$$

Symbolic Programming

Symbolic Programming

Symbolic Programming

(define (square x) (* x x))

Symbolic Programming

Symbolic Programming

'(define (square x$)$ (* x x))

Symbolic Programming

procedure

(define (square x) (* x x))
'(define (square $x)(* x$ x))
list

Symbolic Programming

procedure

(define (square x) (* x x))
'(define (square x) (* x x))
list

- Lists can be manipulated with car and cdr

Symbolic Programming

procedure

(define (square x) (* x x))

- Lists can be manipulated with car and cdr
- Lists can created and combined with cons, list, append

Symbolic Programming

procedure

(define (square x) (* x x))

- Lists can be manipulated with car and cdr
- Lists can created and combined with cons, list, append
- We can rewrite Scheme procedures using these tools!

List Comprehensions in Scheme

List Comprehensions in Scheme

$$
\left((* x x) \text { for } x \text { in '(1 } 2 \begin{array}{lll}
1 & 3
\end{array}\right) \text { if (> } x \text { 2)) }
$$

List Comprehensions in Scheme

$$
((* x x) \text { for } x \text { in '(1 } 2 \text { 3 } 3 \text {) if (> } x \text { 2)) }
$$

(map (lambda (x) (* x x))
(filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

$$
((* x x) \text { for } x \text { in '(1 } 2 \text { 3 } 3 \text {) if (> } x \text { 2)) }
$$

(map (lambda (x) (* x x))
(filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

(map (lambda (x) (* x x))
(filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

(map (lambda (x) (* x x))
(filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

$$
\left.\left((* x x) \text { for } x \text { in '(1 } 2 \begin{array}{lll}
1 & 3 & 4
\end{array}\right) \text { if }(>x 2)\right)
$$

(map (lambda (x) (* x x)) (filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

exp

(map (lambda (x) (* x x))
(filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

exp

$$
\begin{aligned}
& \text { (* } \mathrm{x} \text { x) }
\end{aligned}
$$

(map (lambda (x) (* x x)) (filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

(map (lambda (x) (* x x)) (filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

(map (lambda (x) (* x x)) (filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

exp

(car exp)
(* $\mathrm{x} x$)
($\operatorname{car}(c d d r \exp))$
(map (lambda (x) (* x x)) (filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

exp

(car exp)
(car (cddr exp))
'(1) $\left.\begin{array}{lll}1 & 3 & 4\end{array}\right)$
(map (lambda (x) (* x x)) (filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

exp

(car exp)
(* $\mathrm{x} x$)
(car (cddr exp))
($\operatorname{car}(\operatorname{cddr}(c d d r \exp)))$
'(1) $\left.\begin{array}{lll}1 & 2 & 4\end{array}\right)$
(map (lambda (x) (* x x)) (filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

exp

(car exp)

```
(* \(\mathrm{x} x\) )
```

(car (cmdr exp))
(car (cddr (cddr exp))) '(1 $\left.\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$
(> x 2)
(map (lambda (x) (* x x)) (filter (lambda (x) (> x 2)) '(1 $\left.2 \begin{array}{lll}1 & 3 & 4\end{array}\right)$)

List Comprehensions in Scheme

exp ((* \quad x x) for x in ' $\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$ if $\left.(>x 2)\right)$
(car exp)
(* $\times x$)
(car (cddr exp))
(car (cddr (cddr exp)))
'(1 234 4)
(car (cddr (cddr (cddr exp)))) (> x 2)
(list 'lambda (list 'x) '(* x x))
(lambda (x) (* x x))
(map (lambda (x) (* x x)) (filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

exp ((* \quad x x) for x in ' $\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$ if $\left.(>x 2)\right)$
(car exp)
(* $\times x$)
(car (cddr exp))
(car (cddr (cddr exp)))
'(1 $\left.2 \begin{array}{ll}1 & 3\end{array}\right)$
(car (cddr (cddr (cddr exp)))) (> x 2)
(list 'lambda (list 'x) '(* x x))
(lambda (x) (* x x))
(lambda (x) (> x 2))
(map (lambda (x) (* x x))
(filter (lambda (x) (> x 2)) '(1 2 3 4)))

List Comprehensions in Scheme

exp

(car exp)
(* $\mathrm{x} \times$)
($\operatorname{car}(c d d r \exp))$
($\operatorname{car}(\operatorname{cddr}(c d d r \exp)))$
'(1) $\left.\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$
($\operatorname{car}(\operatorname{cddr}(\operatorname{cddr}(c d d r \exp))))$
(> x 2)
(list 'lambda (list 'x) '(* x x))
(lambda (x) (* x x))
(list 'lambda (list 'x) '(> x 2))
(lambda (x) (> x 2))
(map (lambda (x) (* x x)) (filter (lambda (x) (> x 2)) '(1 $\left.\begin{array}{llll}1 & 3 & 4\end{array}\right)$)

List Comprehensions in Scheme

exp

$$
\left.\left((* x x) \text { for } x \text { in '(1 } 2 \begin{array}{llll}
1 & 3 & 4
\end{array}\right) \text { if }(>x 2)\right)
$$

(car exp)
($\operatorname{car}(c d d r \exp))$
($\operatorname{car}(\operatorname{cddr}(c d d r \exp)))$
'(1) $\left.\begin{array}{lll}1 & 2 & 4\end{array}\right)$
($\operatorname{car}(\operatorname{cddr}(\operatorname{cddr}(c d d r \exp))))$
(> x 2)
(list 'lambda (list 'x) '(* x x))
(lambda (x) (* x x))
(list 'lambda (list 'x) '(> x 2))
(lambda (x) (> x 2))

```
(map (lambda (x) (* x x))
(filter (lambda (x) (> x 2)) '(1 2 3 4)))
```


List Comprehensions in Scheme

(list 'lambda (list 'x) '(* x x))
(lambda (x) (* x x))
(list 'lambda (list 'x) '(> x 2))
(lambda (x) (> x 2))

```
(map (lambda (x) (* x x))
    (filter (lambda (x) (> x 2)) '(1 2 3 4)))
```


More Symbolic Programming

Rational numbers!

Summary

Summary

- Tail call optimization allows some recursive procedures to take up a constant amount of space - just like iterative functions in Python!

Summary

- Tail call optimization allows some recursive procedures to take up a constant amount of space - just like iterative functions in Python!
- Streams can be used to define implicit sequences

Summary

- Tail call optimization allows some recursive procedures to take up a constant amount of space - just like iterative functions in Python!
- Streams can be used to define implicit sequences
- We can manipulate Scheme programs (as lists) to create new Scheme programs

Summary

- Tail call optimization allows some recursive procedures to take up a constant amount of space - just like iterative functions in Python!
- Streams can be used to define implicit sequences
- We can manipulate Scheme programs (as lists) to create new Scheme programs
- This is one huge language feature that has contributed to Lisp's staying power over the years

Summary

- Tail call optimization allows some recursive procedures to take up a constant amount of space - just like iterative functions in Python!
- Streams can be used to define implicit sequences
- We can manipulate Scheme programs (as lists) to create new Scheme programs
- This is one huge language feature that has contributed to Lisp's staying power over the years
- Look up "macros" to learn more!

