
Marvin Zhang
07/27/2016

Lecture 21: Interpreters I

Announcements

http://cs61a.org/

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Interpretation), the
goals are:

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Interpretation), the
goals are:
• To learn a new language, Scheme,

in two days!

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Interpretation), the
goals are:
• To learn a new language, Scheme,

in two days!
• To understand how interpreters

work, using Scheme as an example

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Programming Languages

Programming Languages

• Computers can execute programs written in many different
programming languages. How?

Programming Languages

• Computers can execute programs written in many different
programming languages. How?

• Computers only deal with machine languages (0s and 1s),
where statements are direct commands to the hardware

Programming Languages

• Computers can execute programs written in many different
programming languages. How?

• Computers only deal with machine languages (0s and 1s),
where statements are direct commands to the hardware

• Programs written in languages like Python are compiled,
or translated, into these machine languages

Programming Languages

• Computers can execute programs written in many different
programming languages. How?

• Computers only deal with machine languages (0s and 1s),
where statements are direct commands to the hardware

• Programs written in languages like Python are compiled,
or translated, into these machine languages

• Python programs are first compiled into Python bytecode,
which has the benefit of being system-independent

Programming Languages

• Computers can execute programs written in many different
programming languages. How?

• Computers only deal with machine languages (0s and 1s),
where statements are direct commands to the hardware

• Programs written in languages like Python are compiled,
or translated, into these machine languages

• Python programs are first compiled into Python bytecode,
which has the benefit of being system-independent

• You can look at Python bytecode using the dis module

Programming Languages

• Computers can execute programs written in many different
programming languages. How?

• Computers only deal with machine languages (0s and 1s),
where statements are direct commands to the hardware

• Programs written in languages like Python are compiled,
or translated, into these machine languages

• Python programs are first compiled into Python bytecode,
which has the benefit of being system-independent

• You can look at Python bytecode using the dis module

(demo)

from dis import dis
dis(square)

Programming Languages

• Computers can execute programs written in many different
programming languages. How?

• Computers only deal with machine languages (0s and 1s),
where statements are direct commands to the hardware

• Programs written in languages like Python are compiled,
or translated, into these machine languages

• Python programs are first compiled into Python bytecode,
which has the benefit of being system-independent

• You can look at Python bytecode using the dis module

(demo)

def square(x):
 return x * x

Python 3
LOAD_FAST 0 (x)
LOAD_FAST 0 (x)
BINARY_MULTIPLY
RETURN_VALUE

Python 3 Bytecode

Interpretation

Interpretation

• Compilers are complicated, and the topic of future courses

Interpretation

• Compilers are complicated, and the topic of future courses
• In this course, we will focus on interpreters, programs that

execute other programs written in a particular language

Interpretation

• Compilers are complicated, and the topic of future courses
• In this course, we will focus on interpreters, programs that

execute other programs written in a particular language
• The Python interpreter is a program written in C

Interpretation

• Compilers are complicated, and the topic of future courses
• In this course, we will focus on interpreters, programs that

execute other programs written in a particular language
• The Python interpreter is a program written in C

• After compiling it to machine code, it can be run to
interpret Python programs

Interpretation

• Compilers are complicated, and the topic of future courses
• In this course, we will focus on interpreters, programs that

execute other programs written in a particular language
• The Python interpreter is a program written in C

• After compiling it to machine code, it can be run to
interpret Python programs

• The last project in this course is to write a Scheme
interpreter in Python

Interpretation

• Compilers are complicated, and the topic of future courses
• In this course, we will focus on interpreters, programs that

execute other programs written in a particular language
• The Python interpreter is a program written in C

• After compiling it to machine code, it can be run to
interpret Python programs

• The last project in this course is to write a Scheme
interpreter in Python
• The Scheme interpreter can then be run using the Python

interpreter to interpret Scheme programs

Interpretation

• Compilers are complicated, and the topic of future courses
• In this course, we will focus on interpreters, programs that

execute other programs written in a particular language
• The Python interpreter is a program written in C

• After compiling it to machine code, it can be run to
interpret Python programs

• The last project in this course is to write a Scheme
interpreter in Python
• The Scheme interpreter can then be run using the Python

interpreter to interpret Scheme programs
• To create a new programming language, we either need a:

Interpretation

• Compilers are complicated, and the topic of future courses
• In this course, we will focus on interpreters, programs that

execute other programs written in a particular language
• The Python interpreter is a program written in C

• After compiling it to machine code, it can be run to
interpret Python programs

• The last project in this course is to write a Scheme
interpreter in Python
• The Scheme interpreter can then be run using the Python

interpreter to interpret Scheme programs
• To create a new programming language, we either need a:

• Specification of the syntax and semantics of the language

Interpretation

• Compilers are complicated, and the topic of future courses
• In this course, we will focus on interpreters, programs that

execute other programs written in a particular language
• The Python interpreter is a program written in C

• After compiling it to machine code, it can be run to
interpret Python programs

• The last project in this course is to write a Scheme
interpreter in Python
• The Scheme interpreter can then be run using the Python

interpreter to interpret Scheme programs
• To create a new programming language, we either need a:

• Specification of the syntax and semantics of the language
• Canonical implementation of either a compiler or

interpreter for the language

The Scheme Interpreter

The Scheme Interpreter

• An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

The Scheme Interpreter

• An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text Values

The Scheme Interpreter

• An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text ValuesExpressions

The Scheme Interpreter

• An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text ValuesExpressionsParser

The Scheme Interpreter

• An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text ValuesExpressionsParser Evaluator

The Scheme Interpreter

• An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

• The job of the parser is to take in text and perform
syntactic analysis to convert it into expressions that
the evaluator can understand

Text ValuesExpressionsParser Evaluator

The Scheme Interpreter

• An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

• The job of the parser is to take in text and perform
syntactic analysis to convert it into expressions that
the evaluator can understand

• The job of the evaluator is to read in expressions and
perform semantic analysis to evaluate the expressions and
output the corresponding values

Text ValuesExpressionsParser Evaluator

Calculator

Calculator

• Building an interpreter for a language is a lot of work

Calculator

• Building an interpreter for a language is a lot of work
• Today, we’ll build an interpreter for a subset of Scheme

Calculator

• Building an interpreter for a language is a lot of work
• Today, we’ll build an interpreter for a subset of Scheme

• We will support +, -, *, /, integers, and floats

Calculator

• Building an interpreter for a language is a lot of work
• Today, we’ll build an interpreter for a subset of Scheme

• We will support +, -, *, /, integers, and floats
• We will call this simple language Calculator

Calculator

• Building an interpreter for a language is a lot of work
• Today, we’ll build an interpreter for a subset of Scheme

• We will support +, -, *, /, integers, and floats
• We will call this simple language Calculator
• In lab, discussion, and next lecture, we will look at

more complicated examples

Calculator

• Building an interpreter for a language is a lot of work
• Today, we’ll build an interpreter for a subset of Scheme

• We will support +, -, *, /, integers, and floats
• We will call this simple language Calculator
• In lab, discussion, and next lecture, we will look at

more complicated examples

(demo)

Calculator

• Building an interpreter for a language is a lot of work
• Today, we’ll build an interpreter for a subset of Scheme

• We will support +, -, *, /, integers, and floats
• We will call this simple language Calculator
• In lab, discussion, and next lecture, we will look at

more complicated examples

(demo)

calc> (/ (+ 8 7) 5)
3.0

Calculator

• Building an interpreter for a language is a lot of work
• Today, we’ll build an interpreter for a subset of Scheme

• We will support +, -, *, /, integers, and floats
• We will call this simple language Calculator
• In lab, discussion, and next lecture, we will look at

more complicated examples

(demo)

calc> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))
57

calc> (/ (+ 8 7) 5)
3.0

From text to expressions

Parsing

Parsing

Parsing

• The parser converts text into expressions

Parsing

• The parser converts text into expressions

Text Expressions

Parsing

• The parser converts text into expressions

Text ExpressionsTokens

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')']

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')']

• Iterative process

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')']

• Iterative process
• Checks number of parentheses

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')']

• Iterative process
• Checks number of parentheses
• Checks for malformed tokens

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')']

• Iterative process
• Checks number of parentheses
• Checks for malformed tokens
• Determines types of tokens

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')']

• Iterative process
• Checks number of parentheses
• Checks for malformed tokens
• Determines types of tokens

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')']

Pair('+', Pair(1, ...))

• Iterative process
• Checks number of parentheses
• Checks for malformed tokens
• Determines types of tokens

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')']

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Iterative process
• Checks number of parentheses
• Checks for malformed tokens
• Determines types of tokens

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')']

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Iterative process
• Checks number of parentheses
• Checks for malformed tokens
• Determines types of tokens

• Tree-recursive process

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')']

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Iterative process
• Checks number of parentheses
• Checks for malformed tokens
• Determines types of tokens

• Tree-recursive process
• Processes tokens one by one

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')']

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Iterative process
• Checks number of parentheses
• Checks for malformed tokens
• Determines types of tokens

• Tree-recursive process
• Processes tokens one by one
• Checks parenthesis structure

Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical
Analysis

Syntactic
Analysis

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')']

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Iterative process
• Checks number of parentheses
• Checks for malformed tokens
• Determines types of tokens

• Tree-recursive process
• Processes tokens one by one
• Checks parenthesis structure
• Returns expression as a Pair

Lexical Analysis

Lexical Analysis

• Tokenization takes in a string and converts it into a
list of tokens by splitting on whitespace

Lexical Analysis

• Tokenization takes in a string and converts it into a
list of tokens by splitting on whitespace
• This step also removes excess whitespace

Lexical Analysis

• Tokenization takes in a string and converts it into a
list of tokens by splitting on whitespace
• This step also removes excess whitespace

• An error is raised if the number of open and closed
parentheses are unequal

Lexical Analysis

• Tokenization takes in a string and converts it into a
list of tokens by splitting on whitespace
• This step also removes excess whitespace

• An error is raised if the number of open and closed
parentheses are unequal

• Each token is checked iteratively to ensure it is valid

Lexical Analysis

• Tokenization takes in a string and converts it into a
list of tokens by splitting on whitespace
• This step also removes excess whitespace

• An error is raised if the number of open and closed
parentheses are unequal

• Each token is checked iteratively to ensure it is valid
• For Calculator, each token must be a parenthesis, an

operator, or a number

Lexical Analysis

• Tokenization takes in a string and converts it into a
list of tokens by splitting on whitespace
• This step also removes excess whitespace

• An error is raised if the number of open and closed
parentheses are unequal

• Each token is checked iteratively to ensure it is valid
• For Calculator, each token must be a parenthesis, an

operator, or a number
• Otherwise, an error is raised

Lexical Analysis

• Tokenization takes in a string and converts it into a
list of tokens by splitting on whitespace
• This step also removes excess whitespace

• An error is raised if the number of open and closed
parentheses are unequal

• Each token is checked iteratively to ensure it is valid
• For Calculator, each token must be a parenthesis, an

operator, or a number
• Otherwise, an error is raised

(demo)

Syntactic Analysis

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

def read_exp(tokens):
 """Returns the first calculator expression."""
 ...

def read_tail(tokens):
 """Reads up to the first mismatched close parenthesis."""
 ...

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

['(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')']

def read_exp(tokens):
 """Returns the first calculator expression."""
 ...

def read_tail(tokens):
 """Reads up to the first mismatched close parenthesis."""
 ...

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

['(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')']

def read_exp(tokens):
 """Returns the first calculator expression."""
 ...

def read_tail(tokens):
 """Reads up to the first mismatched close parenthesis."""
 ...

Resulting expression:

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

['+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')']

def read_exp(tokens):
 """Returns the first calculator expression."""
 ...

def read_tail(tokens):
 """Reads up to the first mismatched close parenthesis."""
 ...

Resulting expression: (

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

['+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')']

def read_exp(tokens):
 """Returns the first calculator expression."""
 ...

def read_tail(tokens):
 """Reads up to the first mismatched close parenthesis."""
 ...

Resulting expression: (

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

[1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')']

def read_exp(tokens):
 """Returns the first calculator expression."""
 ...

def read_tail(tokens):
 """Reads up to the first mismatched close parenthesis."""
 ...

Resulting expression: (+

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

[1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')']

def read_exp(tokens):
 """Returns the first calculator expression."""
 ...

def read_tail(tokens):
 """Reads up to the first mismatched close parenthesis."""
 ...

Resulting expression: (+

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

['(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')']

def read_exp(tokens):
 """Returns the first calculator expression."""
 ...

def read_tail(tokens):
 """Reads up to the first mismatched close parenthesis."""
 ...

Resulting expression: (+ 1

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

['(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')']

def read_exp(tokens):
 """Returns the first calculator expression."""
 ...

def read_tail(tokens):
 """Reads up to the first mismatched close parenthesis."""
 ...

Resulting expression: (+ 1

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

['(', '*', 4, 5.6, ')', ')']

def read_exp(tokens):
 """Returns the first calculator expression."""
 ...

def read_tail(tokens):
 """Reads up to the first mismatched close parenthesis."""
 ...

Resulting expression: (+ 1 (- 23)

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

['(', '*', 4, 5.6, ')', ')']

def read_exp(tokens):
 """Returns the first calculator expression."""
 ...

def read_tail(tokens):
 """Reads up to the first mismatched close parenthesis."""
 ...

Resulting expression: (+ 1 (- 23)

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

[')']

def read_exp(tokens):
 """Returns the first calculator expression."""
 ...

def read_tail(tokens):
 """Reads up to the first mismatched close parenthesis."""
 ...

Resulting expression: (+ 1 (- 23) (* 4 5.6)

Syntactic Analysis

• Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

• Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

(demo)

[]

def read_exp(tokens):
 """Returns the first calculator expression."""
 ...

def read_tail(tokens):
 """Reads up to the first mismatched close parenthesis."""
 ...

Resulting expression: (+ 1 (- 23) (* 4 5.6))

From expressions to values

Evaluation

Evaluation

Evaluation

• Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression

Evaluation

• Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression
• In Calculator, the value is always an operator or a number

Evaluation

• Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression
• In Calculator, the value is always an operator or a number

• If the expression is primitive, we can return the value of the
expression directly

Evaluation

• Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression
• In Calculator, the value is always an operator or a number

• If the expression is primitive, we can return the value of the
expression directly

• Otherwise, we have a call expression, and we follow the rules for
evaluating call expressions:

Evaluation

• Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression
• In Calculator, the value is always an operator or a number

• If the expression is primitive, we can return the value of the
expression directly

• Otherwise, we have a call expression, and we follow the rules for
evaluating call expressions:

1. Evaluate the operator to get a function

Evaluation

• Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression
• In Calculator, the value is always an operator or a number

• If the expression is primitive, we can return the value of the
expression directly

• Otherwise, we have a call expression, and we follow the rules for
evaluating call expressions:

1. Evaluate the operator to get a function

2. Evaluate the operands to get its values

Evaluation

• Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression
• In Calculator, the value is always an operator or a number

• If the expression is primitive, we can return the value of the
expression directly

• Otherwise, we have a call expression, and we follow the rules for
evaluating call expressions:

1. Evaluate the operator to get a function

2. Evaluate the operands to get its values

3. Apply the function to the values of the operands to get the
final value

Evaluation

• Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression
• In Calculator, the value is always an operator or a number

• If the expression is primitive, we can return the value of the
expression directly

• Otherwise, we have a call expression, and we follow the rules for
evaluating call expressions:

1. Evaluate the operator to get a function

2. Evaluate the operands to get its values

3. Apply the function to the values of the operands to get the
final value

• This hopefully looks very familiar!

Evaluation

• Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression
• In Calculator, the value is always an operator or a number

• If the expression is primitive, we can return the value of the
expression directly

• Otherwise, we have a call expression, and we follow the rules for
evaluating call expressions:

1. Evaluate the operator to get a function

2. Evaluate the operands to get its values

3. Apply the function to the values of the operands to get the
final value

• This hopefully looks very familiar!

(demo)

The Evaluate and Apply Functions

The Evaluate and Apply Functions

def calc_eval(exp):
 if isinstance(exp, Pair):
 return calc_apply(calc_eval(exp.first),  
 list(exp.second.map(calc_eval)))
 elif exp in OPERATORS:
 return OPERATORS[exp]
 else:
 return exp

def calc_apply(op, args):
 return op(*args)

The Evaluate and Apply Functions

def calc_eval(exp):
 if isinstance(exp, Pair):
 return calc_apply(calc_eval(exp.first),  
 list(exp.second.map(calc_eval)))
 elif exp in OPERATORS:
 return OPERATORS[exp]
 else:
 return exp

def calc_apply(op, args):
 return op(*args)

• Why define calc_apply? It’s not really necessary, since
the Calculator language is so simple

The Evaluate and Apply Functions

def calc_eval(exp):
 if isinstance(exp, Pair):
 return calc_apply(calc_eval(exp.first),  
 list(exp.second.map(calc_eval)))
 elif exp in OPERATORS:
 return OPERATORS[exp]
 else:
 return exp

def calc_apply(op, args):
 return op(*args)

• Why define calc_apply? It’s not really necessary, since
the Calculator language is so simple
• For real languages, applying functions is more complex

The Evaluate and Apply Functions

def calc_eval(exp):
 if isinstance(exp, Pair):
 return calc_apply(calc_eval(exp.first),  
 list(exp.second.map(calc_eval)))
 elif exp in OPERATORS:
 return OPERATORS[exp]
 else:
 return exp

def calc_apply(op, args):
 return op(*args)

• Why define calc_apply? It’s not really necessary, since
the Calculator language is so simple
• For real languages, applying functions is more complex
• With user-defined functions, the apply function has to

call the evaluate function! This mutual recursion is
called the eval-apply loop

A Calculator interactive interpreter!

Putting it all together

The Read-Eval-Print Loop

The Read-Eval-Print Loop

• Interactive interpreters all follow the same interface:

The Read-Eval-Print Loop

• Interactive interpreters all follow the same interface:

1. Print a prompt

The Read-Eval-Print Loop

• Interactive interpreters all follow the same interface:

1. Print a prompt

2. Read text input from the user

The Read-Eval-Print Loop

• Interactive interpreters all follow the same interface:

1. Print a prompt

2. Read text input from the user

3. Parse the input into an expression

The Read-Eval-Print Loop

• Interactive interpreters all follow the same interface:

1. Print a prompt

2. Read text input from the user

3. Parse the input into an expression

4. Evaluate the expression into a value

The Read-Eval-Print Loop

• Interactive interpreters all follow the same interface:

1. Print a prompt

2. Read text input from the user

3. Parse the input into an expression

4. Evaluate the expression into a value

5. Report any errors, if they occur, otherwise

The Read-Eval-Print Loop

• Interactive interpreters all follow the same interface:

1. Print a prompt

2. Read text input from the user

3. Parse the input into an expression

4. Evaluate the expression into a value

5. Report any errors, if they occur, otherwise

6. Print the value and return to step 1

The Read-Eval-Print Loop

• Interactive interpreters all follow the same interface:

1. Print a prompt

2. Read text input from the user

3. Parse the input into an expression

4. Evaluate the expression into a value

5. Report any errors, if they occur, otherwise

6. Print the value and return to step 1

• This is known as the read-eval-print loop (REPL)

The Read-Eval-Print Loop

• Interactive interpreters all follow the same interface:

1. Print a prompt

2. Read text input from the user

3. Parse the input into an expression

4. Evaluate the expression into a value

5. Report any errors, if they occur, otherwise

6. Print the value and return to step 1

• This is known as the read-eval-print loop (REPL)

(demo)

Handling Exceptions

Handling Exceptions

• Various exceptions may be raised throughout the REPL:

Handling Exceptions

• Various exceptions may be raised throughout the REPL:

• Lexical analysis: The token 2.3.4 raises SyntaxError

Handling Exceptions

• Various exceptions may be raised throughout the REPL:

• Lexical analysis: The token 2.3.4 raises SyntaxError
• Syntactic analysis: A misplaced) raises SyntaxError

Handling Exceptions

• Various exceptions may be raised throughout the REPL:

• Lexical analysis: The token 2.3.4 raises SyntaxError
• Syntactic analysis: A misplaced) raises SyntaxError
• Evaluation: No arguments to - raises TypeError

Handling Exceptions

• Various exceptions may be raised throughout the REPL:

• Lexical analysis: The token 2.3.4 raises SyntaxError
• Syntactic analysis: A misplaced) raises SyntaxError
• Evaluation: No arguments to - raises TypeError

• An interactive interpreter prints information about each
error that occurs

Handling Exceptions

• Various exceptions may be raised throughout the REPL:

• Lexical analysis: The token 2.3.4 raises SyntaxError
• Syntactic analysis: A misplaced) raises SyntaxError
• Evaluation: No arguments to - raises TypeError

• An interactive interpreter prints information about each
error that occurs

• A well-designed interactive interpreter should not halt
completely on an error, so that the user has an
opportunity to try again in the current environment

Handling Exceptions

• Various exceptions may be raised throughout the REPL:

• Lexical analysis: The token 2.3.4 raises SyntaxError
• Syntactic analysis: A misplaced) raises SyntaxError
• Evaluation: No arguments to - raises TypeError

• An interactive interpreter prints information about each
error that occurs

• A well-designed interactive interpreter should not halt
completely on an error, so that the user has an
opportunity to try again in the current environment

(demo)

Summary

Summary

• We built an interpreter today!

Summary

• We built an interpreter today!
• It was for a very simple language, but the same ideas

and principles will allow us to build an interpreter
for Scheme, a much more complicated language

Summary

• We built an interpreter today!
• It was for a very simple language, but the same ideas

and principles will allow us to build an interpreter
for Scheme, a much more complicated language

• More complicated examples are coming soon

Summary

• We built an interpreter today!
• It was for a very simple language, but the same ideas

and principles will allow us to build an interpreter
for Scheme, a much more complicated language

• More complicated examples are coming soon

• Interpreters are separated into a parser and an evaluator

Summary

• We built an interpreter today!
• It was for a very simple language, but the same ideas

and principles will allow us to build an interpreter
for Scheme, a much more complicated language

• More complicated examples are coming soon

• Interpreters are separated into a parser and an evaluator
• The parser takes in text input and outputs the

corresponding expressions, using tokens as a midpoint

Summary

• We built an interpreter today!
• It was for a very simple language, but the same ideas

and principles will allow us to build an interpreter
for Scheme, a much more complicated language

• More complicated examples are coming soon

• Interpreters are separated into a parser and an evaluator
• The parser takes in text input and outputs the

corresponding expressions, using tokens as a midpoint
• The evaluator takes in an expression and outputs the

corresponding value

Summary

• We built an interpreter today!
• It was for a very simple language, but the same ideas

and principles will allow us to build an interpreter
for Scheme, a much more complicated language

• More complicated examples are coming soon

• Interpreters are separated into a parser and an evaluator
• The parser takes in text input and outputs the

corresponding expressions, using tokens as a midpoint
• The evaluator takes in an expression and outputs the

corresponding value
• The read-eval-print loop completes our interpreter

