Lecture 21: Interpreters 1

Marvin Zhang
07/27/2016

Announcements

http://cs61a.org/

Roadmap

[Introduction)
[Functions)

Data
@utability]
(@bjects)
(Interpretation)

(Paradigms)
(Applications)

Roadmap

~

Introduction)

Y@

Functions)

~

- This week (Interpretation), the
Data goals are:

@utability]
(@bjects)
(Interpretation)

(Paradigms)
(Applications)

Roadmap

Introduction
Functions

- This week (Interpretation), the
Data goals are:

- To learn a new language, Scheme,

[Mutabilityj in two days!
(@bjects)
(Interpretation)
(%aradigms]

(Applications)

Roadmap

Introduction
Functions

This week (Interpretation), the
Data goals are:

- To learn a new language, Scheme,
[Mutability] in two days!

« To understand how interpreters
(Objects) work, using Scheme as an example
(Interpretation)
(%aradigms]

(Applications)

Programming Languages

Programming Languages

Computers can execute programs written in many different
programming languages. How?

Programming Languages

Computers can execute programs written in many different
programming languages. How?

Computers only deal with machine languages (0s and 1s),
where statements are direct commands to the hardware

Programming Languages

Computers can execute programs written in many different
programming languages. How?

Computers only deal with machine languages (0s and 1s),
where statements are direct commands to the hardware

Programs written in languages like Python are compiled,
or translated, into these machine langquages

Programming Languages

Computers can execute programs written in many different
programming languages. How?

Computers only deal with machine languages (0s and 1s),
where statements are direct commands to the hardware

Programs written in languages like Python are compiled,
or translated, into these machine langquages

Python programs are first compiled into Python bytecode,
which has the benefit of being system-independent

Programming Languages

Computers can execute programs written in many different
programming languages. How?

Computers only deal with machine languages (0s and 1s),
where statements are direct commands to the hardware

Programs written in languages like Python are compiled,
or translated, into these machine langquages

Python programs are first compiled into Python bytecode,
which has the benefit of being system-independent

You can look at Python bytecode using the dis module

Programming Languages (demo)

Computers can execute programs written in many different
programming languages. How?

Computers only deal with machine languages (0s and 1s),
where statements are direct commands to the hardware

Programs written in languages like Python are compiled,
or translated, into these machine langquages

Python programs are first compiled into Python bytecode,
which has the benefit of being system-independent

You can look at Python bytecode using the dis module

Programming Languages (demo)

Computers can execute programs written in many different
programming languages. How?

Computers only deal with machine languages (0s and 1s),
where statements are direct commands to the hardware

Programs written in languages like Python are compiled,
or translated, into these machine langquages

Python programs are first compiled into Python bytecode,
which has the benefit of being system-independent

You can look at Python bytecode using the dis module

Python 3 Python 3 Bytecode
def square(x): LOAD FAST 0 (x)
return X X LOAD FAST 0 (x)

BINARY MULTIPLY

from dis impor '
om dis import dis RETURN_VALUE

dis(square)

Interpretation

Interpretation

Compilers are complicated, and the topic of future courses

Interpretation

Compilers are complicated, and the topic of future courses

In this course, we will focus on interpreters, programs that
execute other programs written in a particular language

Interpretation

Compilers are complicated, and the topic of future courses

In this course, we will focus on interpreters, programs that
execute other programs written in a particular language

The Python interpreter 1is a program written in C

Interpretation

« Compilers are complicated, and the topic of future courses

« In this course, we will focus on interpreters, programs that
execute other programs written in a particular language

« The Python interpreter is a program written in C

- After compiling 1t to machine code, it can be run to
interpret Python programs

Interpretation

« Compilers are complicated, and the topic of future courses

« In this course, we will focus on interpreters, programs that
execute other programs written in a particular language

« The Python interpreter is a program written in C

- After compiling 1t to machine code, it can be run to
interpret Python programs

« The last project in this course is to write a Scheme
interpreter 1in Python

Interpretation

« Compilers are complicated, and the topic of future courses

« In this course, we will focus on interpreters, programs that
execute other programs written in a particular language

« The Python interpreter is a program written in C

- After compiling 1t to machine code, it can be run to
interpret Python programs

« The last project in this course is to write a Scheme
interpreter 1in Python

- The Scheme interpreter can then be run using the Python
interpreter to interpret Scheme programs

Interpretation

« Compilers are complicated, and the topic of future courses

« In this course, we will focus on interpreters, programs that
execute other programs written in a particular language

« The Python interpreter is a program written in C

- After compiling 1t to machine code, it can be run to
interpret Python programs

« The last project in this course is to write a Scheme
interpreter 1in Python

- The Scheme interpreter can then be run using the Python
interpreter to interpret Scheme programs

- To create a new programming language, we either need a:

Interpretation

« Compilers are complicated, and the topic of future courses

« In this course, we will focus on interpreters, programs that
execute other programs written in a particular language

« The Python interpreter is a program written in C

- After compiling 1t to machine code, it can be run to
interpret Python programs

« The last project in this course is to write a Scheme
interpreter 1in Python

- The Scheme interpreter can then be run using the Python
interpreter to interpret Scheme programs

- To create a new programming language, we either need a:

« Specification of the syntax and semantics of the langquage

Interpretation

« Compilers are complicated, and the topic of future courses

« In this course, we will focus on interpreters, programs that
execute other programs written in a particular language

« The Python interpreter is a program written in C

- After compiling 1t to machine code, it can be run to
interpret Python programs

« The last project in this course is to write a Scheme
interpreter 1in Python

- The Scheme interpreter can then be run using the Python
interpreter to interpret Scheme programs

- To create a new programming language, we either need a:
« Specification of the syntax and semantics of the langquage

- Canonical implementation of either a compiler or
interpreter for the langquage

The Scheme Interpreter

The Scheme Interpreter

An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

The Scheme Interpreter

An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text Values

The Scheme Interpreter

An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text Expressions Values

The Scheme Interpreter

An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text Parser Expressions Values

The Scheme Interpreter

An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text Expressions Evaluator Values

The Scheme Interpreter

An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text Expressions Evaluator Values

The job of the parser is to take in text and perform
syntactic analysis to convert it into expressions that
the evaluator can understand

The Scheme Interpreter

- An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text Parser Expressions Evaluator Values

« The job of the parser is to take in text and perform
syntactic analysis to convert it into expressions that
the evaluator can understand

« The job of the evaluator 1is to read in expressions and
perform semantic analysis to evaluate the expressions and
output the corresponding values

Calculator

Calculator

Building an interpreter for a language is a lot of work

Calculator

Building an interpreter for a language 1is a lot of work

Today, we’ll build an interpreter for a subset of Scheme

Calculator

Building an interpreter for a language 1s a lot of work
Today, we’ll build an interpreter for a subset of Scheme

We will support +, -, *, /, 1integers, and floats

Calculator

Building an interpreter for a language 1is a lot of work
Today, we’ll build an interpreter for a subset of Scheme
We will support +, -, *, /, 1integers, and floats

We will call this simple language Calculator

Calculator

Building an interpreter for a language 1s a lot of work

Today, we’ll build an interpreter for a subset of Scheme
We will support +, -, *, /, 1integers, and floats

We will call this simple language Calculator

In lab, discussion, and next lecture, we will look at
more complicated examples

Calculator (demo)

Building an interpreter for a language 1s a lot of work

Today, we’ll build an interpreter for a subset of Scheme
We will support +, -, *, /, 1integers, and floats

We will call this simple language Calculator

In lab, discussion, and next lecture, we will look at
more complicated examples

Calculator (demo)

Building an interpreter for a language 1s a lot of work

Today, we’ll build an interpreter for a subset of Scheme
We will support +, -, *, /, 1integers, and floats

We will call this simple language Calculator

In lab, discussion, and next lecture, we will look at
more complicated examples

calc> (/ (+ 8 7) 5)
3.0

Calculator (demo)

Building an interpreter for a language 1s a lot of work

Today, we’ll build an interpreter for a subset of Scheme
We will support +, -, *, /, 1integers, and floats

We will call this simple language Calculator

In lab, discussion, and next lecture, we will look at
more complicated examples

calc> (/ (+ 8 7) 5) calc> (+ (* 3
3.0 (+ (* 2 4)
(+ 3 5)))
(+ (= 10 7)

6))
57

Parsing

From text to expressions

Parsing

Parsing

The parser converts text into expressions

Parsing

« The parser converts text into expressions

Text Expressions

Parsing

The parser converts text into expressions

Text Tokens Expressions

Parsing

The parser converts text into expressions

Lexical

Text Tokens Expressions

Analysis

Parsing

The parser converts text into expressions

Lexical Syntactic

Text Tokens Expressions

Analysis Analysis

Parsing

The parser converts text into expressions

Lexical Syntactic

Text Tokens Expressions

Analysis Analysis

Parsing

The parser converts text into expressions

Lexical Syntactic

Text Tokens Expressions

Analysis Analysis

l(+ 1l
(- 23)°

Parsing

The parser converts text into expressions

Lexical Syntactic

Text Tokens Expressions

Analysis Analysis

l(+ 1l
(- 23)°
(* 4 5.6))"

Parsing

The parser converts text into expressions

Lexical
Analysis

Syntactic

Text Tokens Expressions

Analysis

Parsing

« The parser converts text into expressions

Lexical
Analysis

Syntactic

Text Tokens Expressions

Analysis

Parsing

« The parser converts text into expressions

Lexical
Analysis

Syntactic

Text Tokens Expressions

Analysis

Parsing

« The parser converts text into expressions

Lexical
Analysis

Syntactic

Text Tokens Expressions

Analysis

Parsing

« The parser converts text into expressions

Text LEcha.l Tokens SyntaCt.lC Expressions
Analysis Analysis
"(+ 1 , 1

(- 23)° r 23,)

(* 4 5.6))" 'y 4, 5.6, "), ")
_)

- Iterative process

J

Parsing

« The parser converts text into expressions

Syntactic

Text LEcha.l Tokens . Expressions
Analysis Analysis
(+ 1 , 1
(- 23)° r 23,)
(* 4 5.6))" 'y 4, 5.6, "), ")']
\

Iterative process
Checks number of parentheses

J

Parsing

« The parser converts text into expressions

Text LEcha.l Tokens SyntaCt.lC Expressions
Analysis Analysis
(+ 1 , 1
(- 23)° r 23,)
(* 4 5.6))° 'y 4, 5.6,),)
\

- Iterative process
« Checks number of parentheses
« Checks for malformed tokens

o J

Parsing

« The parser converts text into expressions

Text LEcha.l Tokens SyntaCt.lC Expressions
Analysis Analysis
(+ 1 , 1
(- 23)° r 23,)
(* 4 5.6))° 'y 4, 5.6,),)
\

Iterative process
Checks number of parentheses
Checks for malformed tokens

Determines types of tokens

J

Parsing

« The parser converts text into expressions

Text LEcha.l Tokens SyntaCt.lC Expressions
Analysis Analysis
(+ 1 , 1
(- 23)° r 23,)
(* 4 5.6))° 'y 4, 5.6,),)
\

Iterative process
Checks number of parentheses
Checks for malformed tokens

Determines types of tokens

J

Parsing

« The parser converts text into expressions

Text LEcha.l Tokens SyntaCt.lC Expressions
Analysis Analysis
(+ 1 ; 1 Pair('+', Pair(1,))
(- 23)° r 23,)
(* 4 5.6))° 'y 4, 5.6,),)
\

Iterative process
Checks number of parentheses
Checks for malformed tokens

Determines types of tokens

J

Parsing

« The parser converts text into expressions

Lexical Syntactic

Text : Tokens . Expressions
Analysis Analysis i
(+ 17 e, '+, 1 Pair('+', Pair(l, ...))
(- 23)° (', "=, 23,) printed as
(* 4 5.6))"° ('v '*'y 4, 5.6, ")',)] (+1 (- 23) (* 4 5.6))
\

Iterative process

Checks number of parentheses
Checks for malformed tokens
Determines types of tokens

J

Parsing

« The parser converts text into expressions

Lexical Syntactic

Text : Tokens . Expressions
Analysis Analysis ;
(+ 1 ¢, '+', 1 Pair('+', Pair(l, ...))
(- 23)° (', =ty 23,) printed as
(* 4 5.6))° (‘v '"*', 4, 5.6, "),)] (+ 1 (- 23) (* 4 5.6))
. N .
Iterative process Tree-recursive process

Checks number of parentheses
Checks for malformed tokens
Determines types of tokens

AN

Parsing

« The parser converts text into expressions

Text LEcha.l Tokens SyntaCt.lC Expressions
Analysis Analysis

(+ 1 ; 1 Pair('+', Pair(l, ...))

(- 23)' ', 23, ") printed as

(* 4 5.6))° Sy T*, 4, 5.6, 7)Y,)] (+ 1 (- 23) (* 4 5.6))

. N .)

Iterative process Tree-recursive process
Checks number of parentheses - Processes tokens one by one

Checks for malformed tokens
Determines types of tokens

AN J

Parsing

« The parser converts text into expressions

Text LEcha.l Tokens SyntaCt.lC Expressions
Analysis Analysis

(+ 1 ¢, '+', 1 Pair('+', Pair(l, ...))

(- 23)° (', =ty 23,) printed as

(* 4 5.6))" (', '*', 4, 5.6, '")', '")'] (+ 1 (- 23) (* 4 5.6))

. /\ N /\ .)

Iterative process Tree-recursive process
Checks number of parentheses - Processes tokens one by one
Checks for malformed tokens « Checks parenthesis structure
Determines types of tokens

AN J

Parsing

« The parser converts text into expressions

Lexical Syntactic

Text : Tokens . Expressions
Analysis Analysis i

(+ 1 ; 1 Pair('+', Pair(l, ...))

(- 23)' ', 23, ") printed as

(* 4 5.6))° Sy T*, 4, 5.6, 7)Y,)] (+ 1 (- 23) (* 4 5.6))

. N .)

Iterative process Tree-recursive process
Checks number of parentheses - Processes tokens one by one
Checks for malformed tokens « Checks parenthesis structure
Determines types of tokens « Returns expression as a Pair

AN J

Lexical Analysis

Lexical Analysis

Tokenization takes 1in a string and converts it into a
list of tokens by splitting on whitespace

Lexical Analysis

Tokenization takes 1in a string and converts it into a
list of tokens by splitting on whitespace

This step also removes excess whitespace

Lexical Analysis

Tokenization takes 1in a string and converts it into a
list of tokens by splitting on whitespace

This step also removes excess whitespace

An error 1s raised if the number of open and closed
parentheses are unequal

Lexical Analysis

Tokenization takes 1in a string and converts it into a
list of tokens by splitting on whitespace

This step also removes excess whitespace

An error 1s raised if the number of open and closed
parentheses are unequal

Each token 1s checked iteratively to ensure it 1s valid

Lexical Analysis

- Tokenization takes 1n a string and converts it into a
list of tokens by splitting on whitespace

« This step also removes excess whitespace

« An error 1s raised if the number of open and closed
parentheses are unequal

- Each token 1s checked iteratively to ensure it 1is valid

- For Calculator, each token must be a parenthesis, an
operator, or a number

Lexical Analysis

- Tokenization takes 1n a string and converts it into a
list of tokens by splitting on whitespace

« This step also removes excess whitespace

« An error 1s raised if the number of open and closed
parentheses are unequal

- Each token 1s checked iteratively to ensure it 1is valid

- For Calculator, each token must be a parenthesis, an
operator, or a number

« Otherwise, an error 1s railsed

Lexical Analysis (demo)

- Tokenization takes 1n a string and converts it into a
list of tokens by splitting on whitespace

« This step also removes excess whitespace

« An error 1s raised if the number of open and closed
parentheses are unequal

- Each token 1s checked iteratively to ensure it 1is valid

- For Calculator, each token must be a parenthesis, an
operator, or a number

« Otherwise, an error 1s railsed

Syntactic Analysis

Syntactic Analysis

Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

Syntactic Analysis

Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

Syntactic Analysis (demo)

Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

Resulting expression:

Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

>[l+|, 1, '(', |_|, 23, ')', '(', l*l, 4, 5.6, l)l, l)l]

Resulting expression:

Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

Resulting expression:

Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

> [1, l(ll '—', 23, ')', '(', I*ll 4, 5.6, l)l, l)l]

Resulting expression: (+

Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

Resulting expression: (+

Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

>[l(|, l_ll 23, ')', '(', '*', 4, 5.6, l)l, l)l]

Resulting expression: (+ 1

Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

Resulting expression: (+ 1

Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

', '*', 4, 5.6, "),)]

Resulting expression: (+ 1 (- 23)

Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

Resulting expression: (+ 1 (- 23)

Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

P)]

Resulting expression: (+ 1 (- 23) (* 4 5.6)

Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

p (1]

Resulting expression: (+ 1 (- 23) (* 4 5.6))

Evaluation

From expressions to values

Evaluation

Evaluation

Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression

Evaluation

- Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression

« In Calculator, the value is always an operator or a number

Evaluation

- Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression

« In Calculator, the value is always an operator or a number

« If the expression 1is primitive, we can return the value of the
expression directly

Evaluation

Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression

« In Calculator, the value is always an operator or a number

If the expression 1s primitive, we can return the value of the
expression directly

Otherwise, we have a call expression, and we follow the rules for
evaluating call expressions:

Evaluation

Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression

« In Calculator, the value is always an operator or a number

If the expression 1s primitive, we can return the value of the
expression directly

Otherwise, we have a call expression, and we follow the rules for
evaluating call expressions:

1. Evaluate the operator to get a function

Evaluation

Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression

« In Calculator, the value is always an operator or a number

If the expression 1s primitive, we can return the value of the
expression directly

Otherwise, we have a call expression, and we follow the rules for
evaluating call expressions:

1. Evaluate the operator to get a function

2. Evaluate the operands to get its values

Evaluation

Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression

In Calculator, the value is always an operator or a number

If the expression 1s primitive, we can return the value of the
expression directly

Otherwise, we have a call expression, and we follow the rules for
evaluating call expressions:

1. Evaluate the operator to get a function
2. Evaluate the operands to get its values

3. Apply the function to the values of the operands to get the
final value

Evaluation

Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression

In Calculator, the value is always an operator or a number

If the expression 1s primitive, we can return the value of the
expression directly

Otherwise, we have a call expression, and we follow the rules for
evaluating call expressions:

1. Evaluate the operator to get a function
2. Evaluate the operands to get its values

3. Apply the function to the values of the operands to get the
final value

-« This hopefully looks very familiar!

Evaluation (demo)

Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression

In Calculator, the value is always an operator or a number

If the expression 1s primitive, we can return the value of the
expression directly

Otherwise, we have a call expression, and we follow the rules for
evaluating call expressions:

1. Evaluate the operator to get a function
2. Evaluate the operands to get its values

3. Apply the function to the values of the operands to get the
final value

-« This hopefully looks very familiar!

The Evaluate and Apply Functions

The Evaluate and Apply Functions

def calc eval(exp):
if isinstance(exp, Pair):
return calc apply(calc eval(exp.first),
list(exp.second.map(calc eval)))
elif exp in OPERATORS:
return OPERATORS|[exp]
else:
return exp

def calc apply(op, args):
return op(*args)

The Evaluate and Apply Functions

def calc eval(exp):
if isinstance(exp, Pair):
return calc apply(calc eval(exp.first),
list(exp.second.map(calc eval)))
elif exp in OPERATORS:
return OPERATORS|[exp]
else:
return exp

def calc apply(op, args):

return op(*args)

 Why define calc apply? It’s not really necessary, since
the Calculator language 1s so simple

The Evaluate and Apply Functions

def calc eval(exp):
if isinstance(exp, Pair):
return calc apply(calc eval(exp.first),
list(exp.second.map(calc eval)))
elif exp in OPERATORS:
return OPERATORS|[exp]
else:
return exp

def calc apply(op, args):
return op(*args)

 Why define calc apply? It’s not really necessary, since
the Calculator language 1s so simple

- For real langquages, applying functions 1s more complex

The Evaluate and Apply Functions

def calc eval(exp):
if isinstance(exp, Pair):
return calc apply(calc eval(exp.first),
list(exp.second.map(calc eval)))
elif exp in OPERATORS:
return OPERATORS|[exp]
else:
return exp

def calc apply(op, args):

return op(*args)

 Why define calc apply? It’s not really necessary, since
the Calculator language 1s so simple

- For real langquages, applying functions 1s more complex

 With user—-defined functions, the apply function has to
call the evaluate function! This mutual recursion 1is
called the eval-apply loop

Putting 1t all together

A Calculator interactive interpreter!

The Read-Eval-Print Loop

The Read-Eval-Print Loop

Interactive interpreters all follow the same interface:

The Read-Eval-Print Loop

Interactive interpreters all follow the same interface:

1. Print a prompt

The Read-Eval-Print Loop

Interactive interpreters all follow the same interface:
1. Print a prompt

2. Read text input from the user

The Read-Eval-Print Loop

Interactive interpreters all follow the same interface:
1. Print a prompt
2. Read text input from the user

3. Parse the input into an expression

The Read-Eval-Print Loop

Interactive interpreters all follow the same interface:
1. Print a prompt
2 Read text input from the user
3. Parse the input into an expression
4

Evaluate the expression into a value

The Read-Eval-Print Loop

Interactive interpreters all follow the same interface:
1. Print a prompt
2 Read text input from the user
3 Parse the input into an expression
4. Evaluate the expression into a value
5

Report any errors, if they occur, otherwise

The Read-Eval-Print Loop

Interactive interpreters all follow the same interface:
1. Print a prompt

Read text input from the user

Parse the input into an expression

Evaluate the expression into a value

Report any errors, if they occur, otherwise

SO U1 B~ W N

Print the value and return to step 1

The Read-Eval-Print Loop

Interactive interpreters all follow the same interface:
1. Print a prompt

Read text input from the user

Parse the input into an expression

Evaluate the expression into a value

Report any errors, if they occur, otherwise

SO U1 B~ W N

Print the value and return to step 1

- This is known as the read-eval-print loop (REPL)

The Read-Eval-Print Loop (demo)

Interactive interpreters all follow the same interface:
1. Print a prompt

Read text input from the user

Parse the input into an expression

Evaluate the expression into a value

Report any errors, if they occur, otherwise

SO U1 B~ W N

Print the value and return to step 1

- This is known as the read-eval-print loop (REPL)

Handling Exceptions

Handling Exceptions

Various exceptions may be raised throughout the REPL:

Handling Exceptions

Various exceptions may be raised throughout the REPL:

Lexical analysis: The token 2.3.4 raises SyntaxError

Handling Exceptions

Various exceptions may be raised throughout the REPL:
Lexical analysis: The token 2.3.4 raises SyntaxError

Syntactic analysis: A misplaced) raises SyntaxError

Handling Exceptions

Various exceptions may be raised throughout the REPL:
Lexical analysis: The token 2.3.4 raises SyntaxError
Syntactic analysis: A misplaced) raises SyntaxError

Evaluation: No arguments to - raises TypeError

Handling Exceptions

- Various exceptions may be raised throughout the REPL:

+ Lexical analysis: The token 2.3.4 raises SyntaxError

Syntactic analysis: A misplaced) raises SyntaxError

- Evaluation: No arguments to - raises TypeError

« An 1interactive interpreter prints information about each
error that occurs

Handling Exceptions

- Various exceptions may be raised throughout the REPL:
+ Lexical analysis: The token 2.3.4 raises SyntaxError
- Syntactic analysis: A misplaced) raises SyntaxError

- Evaluation: No arguments to - raises TypeError

« An 1interactive interpreter prints information about each
error that occurs

« A well-designed interactive interpreter should not halt
completely on an error, so that the user has an
opportunity to try again 1in the current environment

Hand1ling Exceptions (demo)

- Various exceptions may be raised throughout the REPL:
+ Lexical analysis: The token 2.3.4 raises SyntaxError
- Syntactic analysis: A misplaced) raises SyntaxError

- Evaluation: No arguments to - raises TypeError

« An 1interactive interpreter prints information about each
error that occurs

« A well-designed interactive interpreter should not halt
completely on an error, so that the user has an
opportunity to try again 1in the current environment

Summary

Summary

We built an interpreter today!

Summary

We built an interpreter today!

It was for a very simple language, but the same ideas
and principles will allow us to build an interpreter
for Scheme, a much more complicated language

Summary

We built an interpreter today!

It was for a very simple language, but the same ideas
and principles will allow us to build an interpreter
for Scheme, a much more complicated language

More complicated examples are coming soon

Summary

 We built an interpreter today!

- It was for a very simple language, but the same ideas
and principles will allow us to build an interpreter
for Scheme, a much more complicated language

 More complicated examples are coming soon

« Interpreters are separated into a parser and an evaluator

Summary

 We built an interpreter today!

- It was for a very simple language, but the same ideas
and principles will allow us to build an interpreter
for Scheme, a much more complicated language

 More complicated examples are coming soon

« Interpreters are separated into a parser and an evaluator

 The parser takes in text input and outputs the
corresponding expressions, using tokens as a midpoint

Summary

 We built an interpreter today!

It was for a very simple language, but the same ideas
and principles will allow us to build an interpreter
for Scheme, a much more complicated language

More complicated examples are coming soon

« Interpreters are separated into a parser and an evaluator

The parser takes in text input and outputs the
corresponding expressions, using tokens as a midpoint

The evaluator takes 1in an expression and outputs the
corresponding value

Summary

 We built an interpreter today!

It was for a very simple language, but the same ideas
and principles will allow us to build an interpreter
for Scheme, a much more complicated language

More complicated examples are coming soon

« Interpreters are separated into a parser and an evaluator

The parser takes in text input and outputs the
corresponding expressions, using tokens as a midpoint

The evaluator takes 1in an expression and outputs the
corresponding value

The read-eval-print loop completes our interpreter

