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Roadmap

• This week (Interpretation), the 
goals are:
• To learn a new language, Scheme, 

in two days!
• To understand how interpreters 

work, using Scheme as an example
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from dis import dis
dis(square)

Programming Languages

• Computers can execute programs written in many different 
programming languages. How?

• Computers only deal with machine languages (0s and 1s), 
where statements are direct commands to the hardware

• Programs written in languages like Python are compiled, 
or translated, into these machine languages

• Python programs are first compiled into Python bytecode, 
which has the benefit of being system-independent

• You can look at Python bytecode using the dis module

(demo)

def square(x):
    return x * x

Python 3
LOAD_FAST                0 (x) 
LOAD_FAST                0 (x) 
BINARY_MULTIPLY      
RETURN_VALUE    

Python 3 Bytecode
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Interpretation

• Compilers are complicated, and the topic of future courses
• In this course, we will focus on interpreters, programs that 

execute other programs written in a particular language
• The Python interpreter is a program written in C

• After compiling it to machine code, it can be run to 
interpret Python programs

• The last project in this course is to write a Scheme 
interpreter in Python
• The Scheme interpreter can then be run using the Python 

interpreter to interpret Scheme programs
• To create a new programming language, we either need a:

• Specification of the syntax and semantics of the language
• Canonical implementation of either a compiler or 

interpreter for the language
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The Scheme Interpreter

• An interpreter for Scheme must take in text (Scheme code) 
as input and output the values from interpreting the text

• The job of the parser is to take in text and perform 
syntactic analysis to convert it into expressions that 
the evaluator can understand

• The job of the evaluator is to read in expressions and 
perform semantic analysis to evaluate the expressions and 
output the corresponding values

Text ValuesExpressionsParser Evaluator
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Calculator

• Building an interpreter for a language is a lot of work
• Today, we’ll build an interpreter for a subset of Scheme

• We will support +, -, *, /, integers, and floats
• We will call this simple language Calculator
• In lab, discussion, and next lecture, we will look at 

more complicated examples

(demo)

calc> (+ (* 3
            (+ (* 2 4)
               (+ 3 5)))
         (+ (- 10 7)
            6))
57

calc> (/ (+ 8 7) 5)
3.0
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Parsing

• The parser converts text into expressions

Text ExpressionsTokensLexical 
Analysis

Syntactic 
Analysis

 '(+ 1'  

 '   (- 23)' 

 '   (* 4 5.6))'

['(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')']

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Iterative process
• Checks number of parentheses
• Checks for malformed tokens
• Determines types of tokens

• Tree-recursive process
• Processes tokens one by one
• Checks parenthesis structure
• Returns expression as a Pair
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• Tokenization takes in a string and converts it into a 
list of tokens by splitting on whitespace
• This step also removes excess whitespace

• An error is raised if the number of open and closed 
parentheses are unequal

• Each token is checked iteratively to ensure it is valid
• For Calculator, each token must be a parenthesis, an 

operator, or a number
• Otherwise, an error is raised

(demo)
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Syntactic Analysis

• Syntactic analysis uses a read function to identify the 
hierarchical structure of an expression 

• Each call to the read function consumes the input tokens 
for exactly one expression, and returns the expression

(demo)

[]

def read_exp(tokens):
    """Returns the first calculator expression."""
    ...

def read_tail(tokens):
    """Reads up to the first mismatched close parenthesis."""
    ...

Resulting expression: (+ 1 (- 23) (* 4 5.6))
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• Evaluation is performed by an evaluate function, which takes in an 
expression (the output of our parser) and computes and returns the 
value of the expression
• In Calculator, the value is always an operator or a number
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The Evaluate and Apply Functions

def calc_eval(exp):
    if isinstance(exp, Pair):
        return calc_apply(calc_eval(exp.first),  
                          list(exp.second.map(calc_eval)))
    elif exp in OPERATORS:
        return OPERATORS[exp]
    else:
        return exp

def calc_apply(op, args):
    return op(*args)

• Why define calc_apply? It’s not really necessary, since 
the Calculator language is so simple
• For real languages, applying functions is more complex
• With user-defined functions, the apply function has to 

call the evaluate function! This mutual recursion is 
called the eval-apply loop



A Calculator interactive interpreter!

Putting it all together
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• Lexical analysis: The token 2.3.4 raises SyntaxError
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• Evaluation: No arguments to - raises TypeError
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error that occurs
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Summary

• We built an interpreter today!
• It was for a very simple language, but the same ideas 

and principles will allow us to build an interpreter 
for Scheme, a much more complicated language

• More complicated examples are coming soon

• Interpreters are separated into a parser and an evaluator
• The parser takes in text input and outputs the 

corresponding expressions, using tokens as a midpoint
• The evaluator takes in an expression and outputs the 

corresponding value
• The read-eval-print loop completes our interpreter


