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Roadmap

Introduction
Functions

This week (Interpretation), the
Data goals are:

- To learn a new language, Scheme,
[Mutability] in two days!

« To understand how interpreters
(Objects) work, using Scheme as an example
(Interpretation)
(%aradigms]

(Applications)
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Programming Languages (demo)

Computers can execute programs written in many different
programming languages. How?

Computers only deal with machine languages (0s and 1s),
where statements are direct commands to the hardware

Programs written in languages like Python are compiled,
or translated, into these machine langquages

Python programs are first compiled into Python bytecode,
which has the benefit of being system-independent

You can look at Python bytecode using the dis module

Python 3 Python 3 Bytecode
def square(x): LOAD FAST 0 (x)
return X X LOAD FAST 0 (x)

BINARY MULTIPLY

from dis impor '
om dis import dis RETURN_VALUE

dis(square)
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Interpretation

« Compilers are complicated, and the topic of future courses

« In this course, we will focus on interpreters, programs that
execute other programs written in a particular language

« The Python interpreter is a program written in C

- After compiling 1t to machine code, it can be run to
interpret Python programs

« The last project in this course is to write a Scheme
interpreter 1in Python

- The Scheme interpreter can then be run using the Python
interpreter to interpret Scheme programs

- To create a new programming language, we either need a:
« Specification of the syntax and semantics of the langquage

- Canonical implementation of either a compiler or
interpreter for the langquage



The Scheme Interpreter



The Scheme Interpreter

An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text



The Scheme Interpreter

An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text Values



The Scheme Interpreter

An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text Expressions Values



The Scheme Interpreter

An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text Parser Expressions Values




The Scheme Interpreter

An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text Expressions Evaluator Values




The Scheme Interpreter

An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text Expressions Evaluator Values

The job of the parser is to take in text and perform
syntactic analysis to convert it into expressions that
the evaluator can understand



The Scheme Interpreter

- An interpreter for Scheme must take in text (Scheme code)
as input and output the values from interpreting the text

Text Parser Expressions Evaluator Values

« The job of the parser is to take in text and perform
syntactic analysis to convert it into expressions that
the evaluator can understand

« The job of the evaluator 1is to read in expressions and
perform semantic analysis to evaluate the expressions and
output the corresponding values
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Calculator (demo)

Building an interpreter for a language 1s a lot of work

Today, we’ll build an interpreter for a subset of Scheme
We will support +, -, *, /, 1integers, and floats

We will call this simple language Calculator

In lab, discussion, and next lecture, we will look at
more complicated examples

calc> (/ (+ 8 7) 5) calc> (+ (* 3
3.0 (+ (* 2 4)
(+ 3 5)))
(+ (= 10 7)

6))
57



Parsing

From text to expressions



Parsing



Parsing

The parser converts text into expressions



Parsing

« The parser converts text into expressions

Text Expressions



Parsing

The parser converts text into expressions

Text Tokens Expressions



Parsing

The parser converts text into expressions

Lexical

Text Tokens Expressions

Analysis




Parsing

The parser converts text into expressions

Lexical Syntactic

Text Tokens Expressions

Analysis Analysis




Parsing

The parser converts text into expressions

Lexical Syntactic

Text Tokens Expressions

Analysis Analysis




Parsing

The parser converts text into expressions

Lexical Syntactic

Text Tokens Expressions

Analysis Analysis

l(+ 1l
(- 23)°



Parsing

The parser converts text into expressions

Lexical Syntactic

Text Tokens Expressions

Analysis Analysis

l(+ 1l
(- 23)°
(* 4 5.6))"



Parsing

The parser converts text into expressions

Lexical
Analysis

Syntactic

Text Tokens Expressions

Analysis




Parsing

« The parser converts text into expressions

Lexical
Analysis

Syntactic

Text Tokens Expressions

Analysis




Parsing

« The parser converts text into expressions

Lexical
Analysis

Syntactic

Text Tokens Expressions

Analysis




Parsing

« The parser converts text into expressions

Lexical
Analysis

Syntactic

Text Tokens Expressions

Analysis




Parsing

« The parser converts text into expressions

Text LEcha.l Tokens SyntaCt.lC Expressions
Analysis Analysis
"(+ 1 , 1

(- 23)° r 23, )

(* 4 5.6))" 'y 4, 5.6, "), ")
_ )

- Iterative process

J




Parsing

« The parser converts text into expressions

Syntactic

Text LEcha.l Tokens . Expressions
Analysis Analysis
(+ 1 , 1
(- 23)° r 23, )
(* 4 5.6))" 'y 4, 5.6, "), ")']
\

Iterative process
Checks number of parentheses

J




Parsing

« The parser converts text into expressions

Text LEcha.l Tokens SyntaCt.lC Expressions
Analysis Analysis
(+ 1 , 1
(- 23)° r 23, )
(* 4 5.6))° 'y 4, 5.6, ), )
\

- Iterative process
« Checks number of parentheses
« Checks for malformed tokens

o J




Parsing

« The parser converts text into expressions

Text LEcha.l Tokens SyntaCt.lC Expressions
Analysis Analysis
(+ 1 , 1
(- 23)° r 23, )
(* 4 5.6))° 'y 4, 5.6, ), )
\

Iterative process
Checks number of parentheses
Checks for malformed tokens

Determines types of tokens

J




Parsing

« The parser converts text into expressions

Text LEcha.l Tokens SyntaCt.lC Expressions
Analysis Analysis
(+ 1 , 1
(- 23)° r 23, )
(* 4 5.6))° 'y 4, 5.6, ), )
\

Iterative process
Checks number of parentheses
Checks for malformed tokens

Determines types of tokens

J




Parsing

« The parser converts text into expressions

Text LEcha.l Tokens SyntaCt.lC Expressions
Analysis Analysis
(+ 1 ; 1 Pair('+', Pair(1, ))
(- 23)° r 23, )
(* 4 5.6))° 'y 4, 5.6, ), )
\

Iterative process
Checks number of parentheses
Checks for malformed tokens

Determines types of tokens

J
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« The parser converts text into expressions
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Parsing

« The parser converts text into expressions

Lexical Syntactic

Text : Tokens . Expressions
Analysis Analysis i

(+ 1 ; 1 Pair('+', Pair(l, ...))

(- 23)' ', 23, ") printed as

(* 4 5.6))° Sy T*, 4, 5.6, 7)Y, )] (+ 1 (- 23) (* 4 5.6))

. N . )

Iterative process  Tree-recursive process
Checks number of parentheses - Processes tokens one by one
Checks for malformed tokens « Checks parenthesis structure
Determines types of tokens « Returns expression as a Pair

AN J




Lexical Analysis



Lexical Analysis

Tokenization takes 1in a string and converts it into a
list of tokens by splitting on whitespace



Lexical Analysis

Tokenization takes 1in a string and converts it into a
list of tokens by splitting on whitespace

This step also removes excess whitespace



Lexical Analysis

Tokenization takes 1in a string and converts it into a
list of tokens by splitting on whitespace

This step also removes excess whitespace

An error 1s raised if the number of open and closed
parentheses are unequal



Lexical Analysis

Tokenization takes 1in a string and converts it into a
list of tokens by splitting on whitespace

This step also removes excess whitespace

An error 1s raised if the number of open and closed
parentheses are unequal

Each token 1s checked iteratively to ensure it 1s valid



Lexical Analysis

- Tokenization takes 1n a string and converts it into a
list of tokens by splitting on whitespace

« This step also removes excess whitespace

« An error 1s raised if the number of open and closed
parentheses are unequal

- Each token 1s checked iteratively to ensure it 1is valid

- For Calculator, each token must be a parenthesis, an
operator, or a number



Lexical Analysis

- Tokenization takes 1n a string and converts it into a
list of tokens by splitting on whitespace

« This step also removes excess whitespace

« An error 1s raised if the number of open and closed
parentheses are unequal

- Each token 1s checked iteratively to ensure it 1is valid

- For Calculator, each token must be a parenthesis, an
operator, or a number

« Otherwise, an error 1s railsed



Lexical Analysis (demo)

- Tokenization takes 1n a string and converts it into a
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« This step also removes excess whitespace

« An error 1s raised if the number of open and closed
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- Syntactic analysis uses a read function to identify the
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« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.
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« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression
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"""Returns the first calculator expression.
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- Syntactic analysis uses a read function to identify the
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for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.
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Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

P )]

Resulting expression: (+ 1 (- 23) (* 4 5.6)



Syntactic Analysis (demo)

- Syntactic analysis uses a read function to identify the
hierarchical structure of an expression

« Each call to the read function consumes the input tokens
for exactly one expression, and returns the expression

def (tokens) :
"""Returns the first calculator expression.

def read tail(tokens):
"""Reads up to the first mismatched close parenthesis.

p (1]

Resulting expression: (+ 1 (- 23) (* 4 5.6))
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Evaluation is performed by an evaluate function, which takes in an
expression (the output of our parser) and computes and returns the
value of the expression

In Calculator, the value is always an operator or a number

If the expression 1s primitive, we can return the value of the
expression directly

Otherwise, we have a call expression, and we follow the rules for
evaluating call expressions:

1. Evaluate the operator to get a function
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The Evaluate and Apply Functions

def calc eval(exp):
if isinstance(exp, Pair):
return calc apply(calc eval(exp.first),
list(exp.second.map(calc eval)))
elif exp in OPERATORS:
return OPERATORS|[exp]
else:
return exp

def calc apply(op, args):

return op(*args)

 Why define calc apply? It’s not really necessary, since
the Calculator language 1s so simple

- For real langquages, applying functions 1s more complex

 With user—-defined functions, the apply function has to
call the evaluate function! This mutual recursion 1is
called the eval-apply loop



Putting 1t all together

A Calculator interactive interpreter!
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Hand1ling Exceptions (demo)

- Various exceptions may be raised throughout the REPL:
+ Lexical analysis: The token 2.3.4 raises SyntaxError
- Syntactic analysis: A misplaced ) raises SyntaxError
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 We built an interpreter today!

It was for a very simple language, but the same ideas
and principles will allow us to build an interpreter
for Scheme, a much more complicated language

More complicated examples are coming soon

« Interpreters are separated into a parser and an evaluator

The parser takes in text input and outputs the
corresponding expressions, using tokens as a midpoint

The evaluator takes 1in an expression and outputs the
corresponding value

The read-eval-print loop completes our interpreter



