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Roadmap

• This week (Paradigms), the goals are:
• To study examples of paradigms 

that are very different from what 
we have seen so far

• To expand our definition of what 
counts as programming

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications
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Imperative Programming

• All of the programs we have seen so far are examples of 
imperative programming, i.e., they specify detailed 
instructions that the computer carries out
• In imperative programming, the programmer must first 

solve the problem, and then code that solution
• But what if we can’t solve the problem? Or what if we 

can’t code the solution?

# Imperative map coloring
colors = ['red', 'blue', 'green']
for region in map:
    i = 0
    while not region.valid:
        region.color = colors[i]
        i += 1
        if i >= len(colors):
            # ???
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Declarative Programming

• In declarative programming, we specify the properties 
that a solution satisfies, instead of specifying the 
instructions to compute the solution
• We tell the computer what the solution looks like, 

instead of how to get the solution
• This is simpler, more natural, and more intuitive for 

certain problems and domains
• We will write code that looks like this:

# Declarative map coloring idea:
Find a solution where:
- All regions of the map are colored
- No neighboring regions have the same color
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Disclaimer

• Declarative languages move the job of solving the problem 
over from the programmer to the interpreter

• However, building a problem solver is hard! We don’t know 
how to build a universal problem solver

• As a result, declarative languages usually only handle 
some subset of problems

• Many problems will still require careful thought and a 
clever approach from the programmer

• Think declaratively, not imperatively

• Solve some cool problems
• As long as the problem is 
not too big

• Requires cleverness from 
the programmer

Today’s Lecture

• Solve less cool problems
• But the problems can be 
much bigger

• More standard approach 
for programmers

Most Declarative Programming
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Logic

• The Logic language was built for this course
• Borrows syntax from Scheme and semantics from Prolog (1972)
• Programs consist of relations, which are lists of symbols

• Logic is pure symbolic programming, no concept of 
numbers or arithmetic of any kind

• There are two types of expressions:
• Facts declare relations to be true

• All relations are false until declared true by a fact
• Queries ask whether relations are true, based on the 

facts that have been declared
• It is the job of the interpreter to figure out if a 

query is true or false

(demo)
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Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

• Relations in facts can also contain variables

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!
logic> (query (border NSW NT))
Failed.
logic> (query (border NSW ?region))
Success!
region: q

logic> (fact (equal ?x ?x))
logic> (query (equal brian brian))
Success!
logic> (query (equal brian marvin))
Failed.

variable
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Negation

• What if we want to check if a relation is false, rather than 
if it is true?

• (not <relation>) is true if <relation> is false, and false 
if <relation> is true

• This is an idea known as negation as failure

• Sometimes, negation as failure does not work the same as 
logical negation

• It is useful to be able to understand the differences

(demo)

logic> (query (not (border NSW NT)))
Success!
logic> (query (not (equal brian marvin)))
Success!
logic> (query (not (equal brian brian)))
Failed.

logic> (query (not (equal brian ?who)))
Failed.
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Compound Facts

• Compound facts contain more than one relation
• The first relation is the conclusion and the subsequent 

relations are hypotheses

• The conclusion is true if, and only if, all of the 
hypotheses are true

(demo)

(fact <conclusion> <hypothesis-1> ... <hypothesis-n>)

; declare all border relations first
logic> (fact (two-away ?r1 ?r2)
             (border ?r1 ?mid)
             (border ?mid ?r2)
             (not (border ?r1 ?r2)))
logic> (query (two-away ?r1 ?r2))
Success!
r1: nsw r2: wa
r1: nt r2: v
r1: q r2: wa
r1: q r2: v
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• Relations are not symmetric, which is weird for borders
• We can fix this by declaring more facts for borders, but 

we won’t do that yet because doing so introduces cycles
• Handling cycles is hard (remember cyclic linked lists?), 

and makes the whole example a bit too complicated
• So we will leave it out for now

• But the basic idea is that, if we have cycles, we have to 
keep track of what regions we have already seen, to make 
sure we don’t look through the same regions forever

logic> (query (border NSW Q))
Success!
logic> (query (border Q NSW))
Failed.
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• Compound queries contain more than one relation

• The query succeeds if, and only if, all of the relations 
are true

(query <relation-1> ... <relation-n>)

logic> (query (two-away NSW ?region)
              (two-away Q ?region))
Success!
region: wa
logic> (query (two-away ?r1 ?r2)
              (border NT ?r2))
Success!
r1: nsw r2: wa
r1: q r2: wa
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• Recursive and hierarchical facts allow us to solve some 
interesting problems in Logic

• As a first example, let’s declare facts for membership of 
an element in a list

logic> (query (in 1 (1 2 3 4)))
Success!
logic> (query (in 5 (1 2 3 4)))
Failed.

(demo)

logic> (query (in ?x (1 2 3 4)))
Success!
x: 1
x: 2
x: 3
x: 4

logic> (fact (in ?elem (?elem . ?rest)))
logic> (fact (in ?elem (?first . ?rest))
             (in ?elem ?rest))
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Example: Appending Lists

• Let’s declare facts for appending two lists together to 
form a third list

logic> (query (append (1 2) (3 4) (1 2 3 4)))
Success!
logic> (query (append (1 2) (3 4 5) (1 2 3 4)))
Failed.

(demo)

logic> (query (append ?lst1 ?lst2 (1 2 3 4)))
Success!
lst1: () lst2: (1 2 3 4)
lst1: (1) lst2: (2 3 4)
lst1: (1 2) lst2: (3 4)
lst1: (1 2 3) lst2: (4)
lst1: (1 2 3 4) lst2: ()

logic> (fact (append () ?lst ?lst))
logic> (fact (append (?first . ?rest) ?lst (?first . ?rest+lst))
             (append ?rest ?lst ?rest+lst))
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• We learned about declarative programming today
• A completely different programming paradigm where our 

programs specify what properties solutions should 
satisfy rather than how to find a solution

• This allows us to solve some problems in an easier and 
more intuitive manner

• We learned Logic, a declarative language
• Logic consists of facts, which declare relations that 

are true, and queries, which ask if relations are true
• Recursive and hierarchical facts allow us to solve many 

interesting problems
• This is very different idea, so you’ll have to practice!


