
Marvin Zhang
08/01/2016

Lecture 23: Logic I

Announcements

http://cs61a.org/

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Paradigms), the goals are:

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Paradigms), the goals are:
• To study examples of paradigms

that are very different from what
we have seen so far

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Paradigms), the goals are:
• To study examples of paradigms

that are very different from what
we have seen so far

• To expand our definition of what
counts as programming

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Today’s Example: Map Coloring

Today’s Example: Map Coloring

• Problem: Given a map divided into regions, is there a way
to color each region red, blue, or green without using
the same color for any neighboring regions?

Today’s Example: Map Coloring

• Problem: Given a map divided into regions, is there a way
to color each region red, blue, or green without using
the same color for any neighboring regions?

Today’s Example: Map Coloring

• Problem: Given a map divided into regions, is there a way
to color each region red, blue, or green without using
the same color for any neighboring regions?

Imperative Programming

Imperative Programming

• All of the programs we have seen so far are examples of
imperative programming, i.e., they specify detailed
instructions that the computer carries out

Imperative Programming

• All of the programs we have seen so far are examples of
imperative programming, i.e., they specify detailed
instructions that the computer carries out
• In imperative programming, the programmer must first

solve the problem, and then code that solution

Imperative Programming

• All of the programs we have seen so far are examples of
imperative programming, i.e., they specify detailed
instructions that the computer carries out
• In imperative programming, the programmer must first

solve the problem, and then code that solution
• But what if we can’t solve the problem? Or what if we

can’t code the solution?

Imperative Programming

• All of the programs we have seen so far are examples of
imperative programming, i.e., they specify detailed
instructions that the computer carries out
• In imperative programming, the programmer must first

solve the problem, and then code that solution
• But what if we can’t solve the problem? Or what if we

can’t code the solution?

Imperative map coloring

Imperative Programming

• All of the programs we have seen so far are examples of
imperative programming, i.e., they specify detailed
instructions that the computer carries out
• In imperative programming, the programmer must first

solve the problem, and then code that solution
• But what if we can’t solve the problem? Or what if we

can’t code the solution?

Imperative map coloring
colors = ['red', 'blue', 'green']

Imperative Programming

• All of the programs we have seen so far are examples of
imperative programming, i.e., they specify detailed
instructions that the computer carries out
• In imperative programming, the programmer must first

solve the problem, and then code that solution
• But what if we can’t solve the problem? Or what if we

can’t code the solution?

Imperative map coloring
colors = ['red', 'blue', 'green']
for region in map:

Imperative Programming

• All of the programs we have seen so far are examples of
imperative programming, i.e., they specify detailed
instructions that the computer carries out
• In imperative programming, the programmer must first

solve the problem, and then code that solution
• But what if we can’t solve the problem? Or what if we

can’t code the solution?

Imperative map coloring
colors = ['red', 'blue', 'green']
for region in map:
 i = 0

Imperative Programming

• All of the programs we have seen so far are examples of
imperative programming, i.e., they specify detailed
instructions that the computer carries out
• In imperative programming, the programmer must first

solve the problem, and then code that solution
• But what if we can’t solve the problem? Or what if we

can’t code the solution?

Imperative map coloring
colors = ['red', 'blue', 'green']
for region in map:
 i = 0
 while not region.valid:

Imperative Programming

• All of the programs we have seen so far are examples of
imperative programming, i.e., they specify detailed
instructions that the computer carries out
• In imperative programming, the programmer must first

solve the problem, and then code that solution
• But what if we can’t solve the problem? Or what if we

can’t code the solution?

Imperative map coloring
colors = ['red', 'blue', 'green']
for region in map:
 i = 0
 while not region.valid:
 region.color = colors[i]

Imperative Programming

• All of the programs we have seen so far are examples of
imperative programming, i.e., they specify detailed
instructions that the computer carries out
• In imperative programming, the programmer must first

solve the problem, and then code that solution
• But what if we can’t solve the problem? Or what if we

can’t code the solution?

Imperative map coloring
colors = ['red', 'blue', 'green']
for region in map:
 i = 0
 while not region.valid:
 region.color = colors[i]
 i += 1

Imperative Programming

• All of the programs we have seen so far are examples of
imperative programming, i.e., they specify detailed
instructions that the computer carries out
• In imperative programming, the programmer must first

solve the problem, and then code that solution
• But what if we can’t solve the problem? Or what if we

can’t code the solution?

Imperative map coloring
colors = ['red', 'blue', 'green']
for region in map:
 i = 0
 while not region.valid:
 region.color = colors[i]
 i += 1
 if i >= len(colors):

Imperative Programming

• All of the programs we have seen so far are examples of
imperative programming, i.e., they specify detailed
instructions that the computer carries out
• In imperative programming, the programmer must first

solve the problem, and then code that solution
• But what if we can’t solve the problem? Or what if we

can’t code the solution?

Imperative map coloring
colors = ['red', 'blue', 'green']
for region in map:
 i = 0
 while not region.valid:
 region.color = colors[i]
 i += 1
 if i >= len(colors):
 # ???

Declarative Programming

Declarative Programming

• In declarative programming, we specify the properties
that a solution satisfies, instead of specifying the
instructions to compute the solution

Declarative Programming

• In declarative programming, we specify the properties
that a solution satisfies, instead of specifying the
instructions to compute the solution
• We tell the computer what the solution looks like,

instead of how to get the solution

Declarative Programming

• In declarative programming, we specify the properties
that a solution satisfies, instead of specifying the
instructions to compute the solution
• We tell the computer what the solution looks like,

instead of how to get the solution
• This is simpler, more natural, and more intuitive for

certain problems and domains

Declarative Programming

• In declarative programming, we specify the properties
that a solution satisfies, instead of specifying the
instructions to compute the solution
• We tell the computer what the solution looks like,

instead of how to get the solution
• This is simpler, more natural, and more intuitive for

certain problems and domains
• We will write code that looks like this:

Declarative Programming

• In declarative programming, we specify the properties
that a solution satisfies, instead of specifying the
instructions to compute the solution
• We tell the computer what the solution looks like,

instead of how to get the solution
• This is simpler, more natural, and more intuitive for

certain problems and domains
• We will write code that looks like this:

Declarative map coloring idea:
Find a solution where:
- All regions of the map are colored
- No neighboring regions have the same color

Disclaimer

Disclaimer

• Declarative languages move the job of solving the problem
over from the programmer to the interpreter

Disclaimer

• Declarative languages move the job of solving the problem
over from the programmer to the interpreter

• However, building a problem solver is hard! We don’t know
how to build a universal problem solver

Disclaimer

• Declarative languages move the job of solving the problem
over from the programmer to the interpreter

• However, building a problem solver is hard! We don’t know
how to build a universal problem solver

• As a result, declarative languages usually only handle
some subset of problems

Disclaimer

• Declarative languages move the job of solving the problem
over from the programmer to the interpreter

• However, building a problem solver is hard! We don’t know
how to build a universal problem solver

• As a result, declarative languages usually only handle
some subset of problems

• Many problems will still require careful thought and a
clever approach from the programmer

Disclaimer

• Declarative languages move the job of solving the problem
over from the programmer to the interpreter

• However, building a problem solver is hard! We don’t know
how to build a universal problem solver

• As a result, declarative languages usually only handle
some subset of problems

• Many problems will still require careful thought and a
clever approach from the programmer

• Think declaratively, not imperatively

Disclaimer

• Declarative languages move the job of solving the problem
over from the programmer to the interpreter

• However, building a problem solver is hard! We don’t know
how to build a universal problem solver

• As a result, declarative languages usually only handle
some subset of problems

• Many problems will still require careful thought and a
clever approach from the programmer

• Think declaratively, not imperatively

Today’s Lecture

Disclaimer

• Declarative languages move the job of solving the problem
over from the programmer to the interpreter

• However, building a problem solver is hard! We don’t know
how to build a universal problem solver

• As a result, declarative languages usually only handle
some subset of problems

• Many problems will still require careful thought and a
clever approach from the programmer

• Think declaratively, not imperatively

• Solve some cool problems

Today’s Lecture

Disclaimer

• Declarative languages move the job of solving the problem
over from the programmer to the interpreter

• However, building a problem solver is hard! We don’t know
how to build a universal problem solver

• As a result, declarative languages usually only handle
some subset of problems

• Many problems will still require careful thought and a
clever approach from the programmer

• Think declaratively, not imperatively

• Solve some cool problems
• As long as the problem is
not too big

Today’s Lecture

Disclaimer

• Declarative languages move the job of solving the problem
over from the programmer to the interpreter

• However, building a problem solver is hard! We don’t know
how to build a universal problem solver

• As a result, declarative languages usually only handle
some subset of problems

• Many problems will still require careful thought and a
clever approach from the programmer

• Think declaratively, not imperatively

• Solve some cool problems
• As long as the problem is
not too big

• Requires cleverness from
the programmer

Today’s Lecture

Disclaimer

• Declarative languages move the job of solving the problem
over from the programmer to the interpreter

• However, building a problem solver is hard! We don’t know
how to build a universal problem solver

• As a result, declarative languages usually only handle
some subset of problems

• Many problems will still require careful thought and a
clever approach from the programmer

• Think declaratively, not imperatively

• Solve some cool problems
• As long as the problem is
not too big

• Requires cleverness from
the programmer

Today’s Lecture Most Declarative Programming

Disclaimer

• Declarative languages move the job of solving the problem
over from the programmer to the interpreter

• However, building a problem solver is hard! We don’t know
how to build a universal problem solver

• As a result, declarative languages usually only handle
some subset of problems

• Many problems will still require careful thought and a
clever approach from the programmer

• Think declaratively, not imperatively

• Solve some cool problems
• As long as the problem is
not too big

• Requires cleverness from
the programmer

Today’s Lecture

• Solve less cool problems

Most Declarative Programming

Disclaimer

• Declarative languages move the job of solving the problem
over from the programmer to the interpreter

• However, building a problem solver is hard! We don’t know
how to build a universal problem solver

• As a result, declarative languages usually only handle
some subset of problems

• Many problems will still require careful thought and a
clever approach from the programmer

• Think declaratively, not imperatively

• Solve some cool problems
• As long as the problem is
not too big

• Requires cleverness from
the programmer

Today’s Lecture

• Solve less cool problems
• But the problems can be
much bigger

Most Declarative Programming

Disclaimer

• Declarative languages move the job of solving the problem
over from the programmer to the interpreter

• However, building a problem solver is hard! We don’t know
how to build a universal problem solver

• As a result, declarative languages usually only handle
some subset of problems

• Many problems will still require careful thought and a
clever approach from the programmer

• Think declaratively, not imperatively

• Solve some cool problems
• As long as the problem is
not too big

• Requires cleverness from
the programmer

Today’s Lecture

• Solve less cool problems
• But the problems can be
much bigger

• More standard approach
for programmers

Most Declarative Programming

The programming language

Logic

Logic

Logic

• The Logic language was built for this course

Logic

• The Logic language was built for this course
• Borrows syntax from Scheme and semantics from Prolog (1972)

Logic

• The Logic language was built for this course
• Borrows syntax from Scheme and semantics from Prolog (1972)
• Programs consist of relations, which are lists of symbols

Logic

• The Logic language was built for this course
• Borrows syntax from Scheme and semantics from Prolog (1972)
• Programs consist of relations, which are lists of symbols

• Logic is pure symbolic programming, no concept of
numbers or arithmetic of any kind

Logic

• The Logic language was built for this course
• Borrows syntax from Scheme and semantics from Prolog (1972)
• Programs consist of relations, which are lists of symbols

• Logic is pure symbolic programming, no concept of
numbers or arithmetic of any kind

• There are two types of expressions:

Logic

• The Logic language was built for this course
• Borrows syntax from Scheme and semantics from Prolog (1972)
• Programs consist of relations, which are lists of symbols

• Logic is pure symbolic programming, no concept of
numbers or arithmetic of any kind

• There are two types of expressions:
• Facts declare relations to be true

Logic

• The Logic language was built for this course
• Borrows syntax from Scheme and semantics from Prolog (1972)
• Programs consist of relations, which are lists of symbols

• Logic is pure symbolic programming, no concept of
numbers or arithmetic of any kind

• There are two types of expressions:
• Facts declare relations to be true

• All relations are false until declared true by a fact

Logic

• The Logic language was built for this course
• Borrows syntax from Scheme and semantics from Prolog (1972)
• Programs consist of relations, which are lists of symbols

• Logic is pure symbolic programming, no concept of
numbers or arithmetic of any kind

• There are two types of expressions:
• Facts declare relations to be true

• All relations are false until declared true by a fact
• Queries ask whether relations are true, based on the

facts that have been declared

Logic

• The Logic language was built for this course
• Borrows syntax from Scheme and semantics from Prolog (1972)
• Programs consist of relations, which are lists of symbols

• Logic is pure symbolic programming, no concept of
numbers or arithmetic of any kind

• There are two types of expressions:
• Facts declare relations to be true

• All relations are false until declared true by a fact
• Queries ask whether relations are true, based on the

facts that have been declared
• It is the job of the interpreter to figure out if a

query is true or false

Logic

• The Logic language was built for this course
• Borrows syntax from Scheme and semantics from Prolog (1972)
• Programs consist of relations, which are lists of symbols

• Logic is pure symbolic programming, no concept of
numbers or arithmetic of any kind

• There are two types of expressions:
• Facts declare relations to be true

• All relations are false until declared true by a fact
• Queries ask whether relations are true, based on the

facts that have been declared
• It is the job of the interpreter to figure out if a

query is true or false

(demo)

Variables

Variables

• Relations can contain variables, which start with ?

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

logic> (fact (border NSW Q))

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

logic> (fact (border NSW Q))
logic> (query (border NSW Q))

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!
logic> (query (border NSW NT))

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!
logic> (query (border NSW NT))
Failed.

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!
logic> (query (border NSW NT))
Failed.
logic> (query (border NSW ?region))

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!
logic> (query (border NSW NT))
Failed.
logic> (query (border NSW ?region))

variable

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!
logic> (query (border NSW NT))
Failed.
logic> (query (border NSW ?region))
Success! variable

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!
logic> (query (border NSW NT))
Failed.
logic> (query (border NSW ?region))
Success!
region: q

variable

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

• Relations in facts can also contain variables

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!
logic> (query (border NSW NT))
Failed.
logic> (query (border NSW ?region))
Success!
region: q

variable

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

• Relations in facts can also contain variables

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!
logic> (query (border NSW NT))
Failed.
logic> (query (border NSW ?region))
Success!
region: q

logic> (fact (equal ?x ?x))

variable

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

• Relations in facts can also contain variables

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!
logic> (query (border NSW NT))
Failed.
logic> (query (border NSW ?region))
Success!
region: q

logic> (fact (equal ?x ?x))
logic> (query (equal brian brian))

variable

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

• Relations in facts can also contain variables

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!
logic> (query (border NSW NT))
Failed.
logic> (query (border NSW ?region))
Success!
region: q

logic> (fact (equal ?x ?x))
logic> (query (equal brian brian))
Success!

variable

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

• Relations in facts can also contain variables

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!
logic> (query (border NSW NT))
Failed.
logic> (query (border NSW ?region))
Success!
region: q

logic> (fact (equal ?x ?x))
logic> (query (equal brian brian))
Success!
logic> (query (equal brian marvin))

variable

Variables

• Relations can contain variables, which start with ?
• A variable can take on the value of a symbol

• Relations in facts can also contain variables

logic> (fact (border NSW Q))
logic> (query (border NSW Q))
Success!
logic> (query (border NSW NT))
Failed.
logic> (query (border NSW ?region))
Success!
region: q

logic> (fact (equal ?x ?x))
logic> (query (equal brian brian))
Success!
logic> (query (equal brian marvin))
Failed.

variable

Negation

Negation

• What if we want to check if a relation is false, rather than
if it is true?

Negation

• What if we want to check if a relation is false, rather than
if it is true?

• (not <relation>) is true if <relation> is false, and false
if <relation> is true

Negation

• What if we want to check if a relation is false, rather than
if it is true?

• (not <relation>) is true if <relation> is false, and false
if <relation> is true

• This is an idea known as negation as failure

Negation

• What if we want to check if a relation is false, rather than
if it is true?

• (not <relation>) is true if <relation> is false, and false
if <relation> is true

• This is an idea known as negation as failure
logic> (query (not (border NSW NT)))

Negation

• What if we want to check if a relation is false, rather than
if it is true?

• (not <relation>) is true if <relation> is false, and false
if <relation> is true

• This is an idea known as negation as failure
logic> (query (not (border NSW NT)))
Success!

Negation

• What if we want to check if a relation is false, rather than
if it is true?

• (not <relation>) is true if <relation> is false, and false
if <relation> is true

• This is an idea known as negation as failure
logic> (query (not (border NSW NT)))
Success!
logic> (query (not (equal brian marvin)))

Negation

• What if we want to check if a relation is false, rather than
if it is true?

• (not <relation>) is true if <relation> is false, and false
if <relation> is true

• This is an idea known as negation as failure
logic> (query (not (border NSW NT)))
Success!
logic> (query (not (equal brian marvin)))
Success!

Negation

• What if we want to check if a relation is false, rather than
if it is true?

• (not <relation>) is true if <relation> is false, and false
if <relation> is true

• This is an idea known as negation as failure
logic> (query (not (border NSW NT)))
Success!
logic> (query (not (equal brian marvin)))
Success!
logic> (query (not (equal brian brian)))

Negation

• What if we want to check if a relation is false, rather than
if it is true?

• (not <relation>) is true if <relation> is false, and false
if <relation> is true

• This is an idea known as negation as failure
logic> (query (not (border NSW NT)))
Success!
logic> (query (not (equal brian marvin)))
Success!
logic> (query (not (equal brian brian)))
Failed.

Negation

• What if we want to check if a relation is false, rather than
if it is true?

• (not <relation>) is true if <relation> is false, and false
if <relation> is true

• This is an idea known as negation as failure

• Sometimes, negation as failure does not work the same as
logical negation

logic> (query (not (border NSW NT)))
Success!
logic> (query (not (equal brian marvin)))
Success!
logic> (query (not (equal brian brian)))
Failed.

Negation

• What if we want to check if a relation is false, rather than
if it is true?

• (not <relation>) is true if <relation> is false, and false
if <relation> is true

• This is an idea known as negation as failure

• Sometimes, negation as failure does not work the same as
logical negation

• It is useful to be able to understand the differences

logic> (query (not (border NSW NT)))
Success!
logic> (query (not (equal brian marvin)))
Success!
logic> (query (not (equal brian brian)))
Failed.

Negation

• What if we want to check if a relation is false, rather than
if it is true?

• (not <relation>) is true if <relation> is false, and false
if <relation> is true

• This is an idea known as negation as failure

• Sometimes, negation as failure does not work the same as
logical negation

• It is useful to be able to understand the differences

(demo)

logic> (query (not (border NSW NT)))
Success!
logic> (query (not (equal brian marvin)))
Success!
logic> (query (not (equal brian brian)))
Failed.

Negation

• What if we want to check if a relation is false, rather than
if it is true?

• (not <relation>) is true if <relation> is false, and false
if <relation> is true

• This is an idea known as negation as failure

• Sometimes, negation as failure does not work the same as
logical negation

• It is useful to be able to understand the differences

(demo)

logic> (query (not (border NSW NT)))
Success!
logic> (query (not (equal brian marvin)))
Success!
logic> (query (not (equal brian brian)))
Failed.

logic> (query (not (equal brian ?who)))
Failed.

Compound Facts

Compound Facts

• Compound facts contain more than one relation

Compound Facts

• Compound facts contain more than one relation
• The first relation is the conclusion and the subsequent

relations are hypotheses

Compound Facts

• Compound facts contain more than one relation
• The first relation is the conclusion and the subsequent

relations are hypotheses
(fact <conclusion> <hypothesis-1> ... <hypothesis-n>)

Compound Facts

• Compound facts contain more than one relation
• The first relation is the conclusion and the subsequent

relations are hypotheses

• The conclusion is true if, and only if, all of the
hypotheses are true

(fact <conclusion> <hypothesis-1> ... <hypothesis-n>)

Compound Facts

• Compound facts contain more than one relation
• The first relation is the conclusion and the subsequent

relations are hypotheses

• The conclusion is true if, and only if, all of the
hypotheses are true

(demo)

(fact <conclusion> <hypothesis-1> ... <hypothesis-n>)

Compound Facts

• Compound facts contain more than one relation
• The first relation is the conclusion and the subsequent

relations are hypotheses

• The conclusion is true if, and only if, all of the
hypotheses are true

(demo)

(fact <conclusion> <hypothesis-1> ... <hypothesis-n>)

; declare all border relations first
logic> (fact (two-away ?r1 ?r2)
 (border ?r1 ?mid)
 (border ?mid ?r2)
 (not (border ?r1 ?r2)))
logic> (query (two-away ?r1 ?r2))
Success!
r1: nsw r2: wa
r1: nt r2: v
r1: q r2: wa
r1: q r2: v

An Aside

An Aside

logic> (query (border NSW Q))

An Aside

logic> (query (border NSW Q))
Success!

An Aside

logic> (query (border NSW Q))
Success!
logic> (query (border Q NSW))

An Aside

logic> (query (border NSW Q))
Success!
logic> (query (border Q NSW))
Failed.

An Aside

• Relations are not symmetric, which is weird for borders

logic> (query (border NSW Q))
Success!
logic> (query (border Q NSW))
Failed.

An Aside

• Relations are not symmetric, which is weird for borders
• We can fix this by declaring more facts for borders, but

we won’t do that yet because doing so introduces cycles

logic> (query (border NSW Q))
Success!
logic> (query (border Q NSW))
Failed.

An Aside

• Relations are not symmetric, which is weird for borders
• We can fix this by declaring more facts for borders, but

we won’t do that yet because doing so introduces cycles
• Handling cycles is hard (remember cyclic linked lists?),

and makes the whole example a bit too complicated

logic> (query (border NSW Q))
Success!
logic> (query (border Q NSW))
Failed.

An Aside

• Relations are not symmetric, which is weird for borders
• We can fix this by declaring more facts for borders, but

we won’t do that yet because doing so introduces cycles
• Handling cycles is hard (remember cyclic linked lists?),

and makes the whole example a bit too complicated
• So we will leave it out for now

logic> (query (border NSW Q))
Success!
logic> (query (border Q NSW))
Failed.

An Aside

• Relations are not symmetric, which is weird for borders
• We can fix this by declaring more facts for borders, but

we won’t do that yet because doing so introduces cycles
• Handling cycles is hard (remember cyclic linked lists?),

and makes the whole example a bit too complicated
• So we will leave it out for now

• But the basic idea is that, if we have cycles, we have to
keep track of what regions we have already seen, to make
sure we don’t look through the same regions forever

logic> (query (border NSW Q))
Success!
logic> (query (border Q NSW))
Failed.

Compound Queries

Compound Queries

• Compound queries contain more than one relation

Compound Queries

• Compound queries contain more than one relation
(query <relation-1> ... <relation-n>)

Compound Queries

• Compound queries contain more than one relation

• The query succeeds if, and only if, all of the relations
are true

(query <relation-1> ... <relation-n>)

Compound Queries

• Compound queries contain more than one relation

• The query succeeds if, and only if, all of the relations
are true

(query <relation-1> ... <relation-n>)

Compound Queries

• Compound queries contain more than one relation

• The query succeeds if, and only if, all of the relations
are true

(query <relation-1> ... <relation-n>)

logic> (query (two-away NSW ?region)
 (two-away Q ?region))

Compound Queries

• Compound queries contain more than one relation

• The query succeeds if, and only if, all of the relations
are true

(query <relation-1> ... <relation-n>)

logic> (query (two-away NSW ?region)
 (two-away Q ?region))
Success!

Compound Queries

• Compound queries contain more than one relation

• The query succeeds if, and only if, all of the relations
are true

(query <relation-1> ... <relation-n>)

logic> (query (two-away NSW ?region)
 (two-away Q ?region))
Success!
region: wa

Compound Queries

• Compound queries contain more than one relation

• The query succeeds if, and only if, all of the relations
are true

(query <relation-1> ... <relation-n>)

logic> (query (two-away NSW ?region)
 (two-away Q ?region))
Success!
region: wa
logic> (query (two-away ?r1 ?r2)
 (border NT ?r2))

Compound Queries

• Compound queries contain more than one relation

• The query succeeds if, and only if, all of the relations
are true

(query <relation-1> ... <relation-n>)

logic> (query (two-away NSW ?region)
 (two-away Q ?region))
Success!
region: wa
logic> (query (two-away ?r1 ?r2)
 (border NT ?r2))
Success!

Compound Queries

• Compound queries contain more than one relation

• The query succeeds if, and only if, all of the relations
are true

(query <relation-1> ... <relation-n>)

logic> (query (two-away NSW ?region)
 (two-away Q ?region))
Success!
region: wa
logic> (query (two-away ?r1 ?r2)
 (border NT ?r2))
Success!
r1: nsw r2: wa

Compound Queries

• Compound queries contain more than one relation

• The query succeeds if, and only if, all of the relations
are true

(query <relation-1> ... <relation-n>)

logic> (query (two-away NSW ?region)
 (two-away Q ?region))
Success!
region: wa
logic> (query (two-away ?r1 ?r2)
 (border NT ?r2))
Success!
r1: nsw r2: wa
r1: q r2: wa

Also, hierarchical facts

Recursive facts

Recursive Facts

Recursive Facts

• A recursive fact uses the same relation in the conclusion
and one or more hypotheses

Recursive Facts

• A recursive fact uses the same relation in the conclusion
and one or more hypotheses

• Just like in imperative programming, we need a base fact
that stops the recursion

Recursive Facts

• A recursive fact uses the same relation in the conclusion
and one or more hypotheses

• Just like in imperative programming, we need a base fact
that stops the recursion

(demo)

Recursive Facts

• A recursive fact uses the same relation in the conclusion
and one or more hypotheses

• Just like in imperative programming, we need a base fact
that stops the recursion

(demo)

Recursive Facts

• A recursive fact uses the same relation in the conclusion
and one or more hypotheses

• Just like in imperative programming, we need a base fact
that stops the recursion

(demo)

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

Recursive Facts

• A recursive fact uses the same relation in the conclusion
and one or more hypotheses

• Just like in imperative programming, we need a base fact
that stops the recursion

(demo)

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

Recursive Facts

• A recursive fact uses the same relation in the conclusion
and one or more hypotheses

• Just like in imperative programming, we need a base fact
that stops the recursion

(demo)

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

Recursive Facts

• A recursive fact uses the same relation in the conclusion
and one or more hypotheses

• Just like in imperative programming, we need a base fact
that stops the recursion

(demo)

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

Recursive Facts

• A recursive fact uses the same relation in the conclusion
and one or more hypotheses

• Just like in imperative programming, we need a base fact
that stops the recursion

(demo)

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

logic> (fact (border V T))

Recursive Facts

• A recursive fact uses the same relation in the conclusion
and one or more hypotheses

• Just like in imperative programming, we need a base fact
that stops the recursion

(demo)

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

logic> (fact (border V T))
logic> (query (two-away NT T))

Recursive Facts

• A recursive fact uses the same relation in the conclusion
and one or more hypotheses

• Just like in imperative programming, we need a base fact
that stops the recursion

(demo)

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

logic> (fact (border V T))
logic> (query (two-away NT T))
Failed.

Recursive Facts

• A recursive fact uses the same relation in the conclusion
and one or more hypotheses

• Just like in imperative programming, we need a base fact
that stops the recursion

(demo)

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

logic> (fact (border V T))
logic> (query (two-away NT T))
Failed.
logic> (query (connected NT T))

Recursive Facts

• A recursive fact uses the same relation in the conclusion
and one or more hypotheses

• Just like in imperative programming, we need a base fact
that stops the recursion

(demo)

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

logic> (fact (border V T))
logic> (query (two-away NT T))
Failed.
logic> (query (connected NT T))
Success!

Recursive Facts

Recursive Facts

• The Logic interpreter performs a search in the space of
relations for each query to find satisfying assignments

Recursive Facts

• The Logic interpreter performs a search in the space of
relations for each query to find satisfying assignments

Recursive Facts

• The Logic interpreter performs a search in the space of
relations for each query to find satisfying assignments

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))
logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

Recursive Facts

• The Logic interpreter performs a search in the space of
relations for each query to find satisfying assignments

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))
logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

logic> (query (connected NT T))
Success!

Recursive Facts

• The Logic interpreter performs a search in the space of
relations for each query to find satisfying assignments

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))
logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

logic> (query (connected NT T))
Success!

(border NT SA)

Recursive Facts

• The Logic interpreter performs a search in the space of
relations for each query to find satisfying assignments

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))
logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

logic> (query (connected NT T))
Success!

(border NT SA)
(border SA V)

Recursive Facts

• The Logic interpreter performs a search in the space of
relations for each query to find satisfying assignments

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))
logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

logic> (query (connected NT T))
Success!

(border NT SA)
(border SA V)

(border V T)

Recursive Facts

• The Logic interpreter performs a search in the space of
relations for each query to find satisfying assignments

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))
logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

logic> (query (connected NT T))
Success!

(border NT SA)
(border SA V)

(border V T) ⇒ (connected V T)

Recursive Facts

• The Logic interpreter performs a search in the space of
relations for each query to find satisfying assignments

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))
logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

logic> (query (connected NT T))
Success!

(border NT SA)
(border SA V)

(border V T) ⇒ (connected V T)
⇒ (connected SA T)

Recursive Facts

• The Logic interpreter performs a search in the space of
relations for each query to find satisfying assignments

logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?r2))
logic> (fact (connected ?r1 ?r2)
 (border ?r1 ?next)
 (connected ?next ?r2))

logic> (query (connected NT T))
Success!

(border NT SA)
(border SA V)

(border V T) ⇒ (connected V T)
⇒ (connected SA T)

⇒ (connected NT T)

Hierarchical Facts

Hierarchical Facts

• Relations can also contain lists in addition to symbols

Hierarchical Facts

• Relations can also contain lists in addition to symbols
(fact (australia (NSW NT Q SA T WA V)))

Hierarchical Facts

• Relations can also contain lists in addition to symbols
(fact (australia (NSW NT Q SA T WA V)))

symbol

Hierarchical Facts

• Relations can also contain lists in addition to symbols
(fact (australia (NSW NT Q SA T WA V)))

symbol list	of	symbols

Hierarchical Facts

• Relations can also contain lists in addition to symbols

• The fancy name for this is hierarchy, but it’s not a fancy or
complex idea

(fact (australia (NSW NT Q SA T WA V)))

symbol list	of	symbols

Hierarchical Facts

• Relations can also contain lists in addition to symbols

• The fancy name for this is hierarchy, but it’s not a fancy or
complex idea

• Variables can refer to either symbols or lists of symbols

(fact (australia (NSW NT Q SA T WA V)))

symbol list	of	symbols

Hierarchical Facts

• Relations can also contain lists in addition to symbols

• The fancy name for this is hierarchy, but it’s not a fancy or
complex idea

• Variables can refer to either symbols or lists of symbols

(fact (australia (NSW NT Q SA T WA V)))

symbol list	of	symbols

logic> (query (australia ?regions))

Hierarchical Facts

• Relations can also contain lists in addition to symbols

• The fancy name for this is hierarchy, but it’s not a fancy or
complex idea

• Variables can refer to either symbols or lists of symbols

(fact (australia (NSW NT Q SA T WA V)))

symbol list	of	symbols

logic> (query (australia ?regions))
Success!

Hierarchical Facts

• Relations can also contain lists in addition to symbols

• The fancy name for this is hierarchy, but it’s not a fancy or
complex idea

• Variables can refer to either symbols or lists of symbols

(fact (australia (NSW NT Q SA T WA V)))

symbol list	of	symbols

logic> (query (australia ?regions))
Success!
regions: (nsw nt q sa t wa v)

Hierarchical Facts

• Relations can also contain lists in addition to symbols

• The fancy name for this is hierarchy, but it’s not a fancy or
complex idea

• Variables can refer to either symbols or lists of symbols

(fact (australia (NSW NT Q SA T WA V)))

symbol list	of	symbols

logic> (query (australia ?regions))
Success!
regions: (nsw nt q sa t wa v)
logic> (query (australia (?first . ?rest)))

Hierarchical Facts

• Relations can also contain lists in addition to symbols

• The fancy name for this is hierarchy, but it’s not a fancy or
complex idea

• Variables can refer to either symbols or lists of symbols

(fact (australia (NSW NT Q SA T WA V)))

symbol list	of	symbols

logic> (query (australia ?regions))
Success!
regions: (nsw nt q sa t wa v)
logic> (query (australia (?first . ?rest)))
Success!

Hierarchical Facts

• Relations can also contain lists in addition to symbols

• The fancy name for this is hierarchy, but it’s not a fancy or
complex idea

• Variables can refer to either symbols or lists of symbols

(fact (australia (NSW NT Q SA T WA V)))

symbol list	of	symbols

logic> (query (australia ?regions))
Success!
regions: (nsw nt q sa t wa v)
logic> (query (australia (?first . ?rest)))
Success!
first: nsw rest: (nt q sa t wa v)

Hierarchical Facts

• Relations can also contain lists in addition to symbols

• The fancy name for this is hierarchy, but it’s not a fancy or
complex idea

• Variables can refer to either symbols or lists of symbols

• Why the dot? Because we are using Scheme lists, 
(nsw nt q sa t wa v) is the same as (nsw . (nt q sa t wa v))

(fact (australia (NSW NT Q SA T WA V)))

symbol list	of	symbols

logic> (query (australia ?regions))
Success!
regions: (nsw nt q sa t wa v)
logic> (query (australia (?first . ?rest)))
Success!
first: nsw rest: (nt q sa t wa v)

Hierarchical Facts

• Relations can also contain lists in addition to symbols

• The fancy name for this is hierarchy, but it’s not a fancy or
complex idea

• Variables can refer to either symbols or lists of symbols

• Why the dot? Because we are using Scheme lists, 
(nsw nt q sa t wa v) is the same as (nsw . (nt q sa t wa v))

(fact (australia (NSW NT Q SA T WA V)))

symbol list	of	symbols

logic> (query (australia ?regions))
Success!
regions: (nsw nt q sa t wa v)
logic> (query (australia (?first . ?rest)))
Success!
first: nsw rest: (nt q sa t wa v)

first

Hierarchical Facts

• Relations can also contain lists in addition to symbols

• The fancy name for this is hierarchy, but it’s not a fancy or
complex idea

• Variables can refer to either symbols or lists of symbols

• Why the dot? Because we are using Scheme lists, 
(nsw nt q sa t wa v) is the same as (nsw . (nt q sa t wa v))

(fact (australia (NSW NT Q SA T WA V)))

symbol list	of	symbols

logic> (query (australia ?regions))
Success!
regions: (nsw nt q sa t wa v)
logic> (query (australia (?first . ?rest)))
Success!
first: nsw rest: (nt q sa t wa v)

first rest

Example: Membership

Example: Membership

• Recursive and hierarchical facts allow us to solve some
interesting problems in Logic

Example: Membership

• Recursive and hierarchical facts allow us to solve some
interesting problems in Logic

• As a first example, let’s declare facts for membership of
an element in a list

Example: Membership

• Recursive and hierarchical facts allow us to solve some
interesting problems in Logic

• As a first example, let’s declare facts for membership of
an element in a list

logic> (query (in 1 (1 2 3 4)))

Example: Membership

• Recursive and hierarchical facts allow us to solve some
interesting problems in Logic

• As a first example, let’s declare facts for membership of
an element in a list

logic> (query (in 1 (1 2 3 4)))
Success!

Example: Membership

• Recursive and hierarchical facts allow us to solve some
interesting problems in Logic

• As a first example, let’s declare facts for membership of
an element in a list

logic> (query (in 1 (1 2 3 4)))
Success!
logic> (query (in 5 (1 2 3 4)))

Example: Membership

• Recursive and hierarchical facts allow us to solve some
interesting problems in Logic

• As a first example, let’s declare facts for membership of
an element in a list

logic> (query (in 1 (1 2 3 4)))
Success!
logic> (query (in 5 (1 2 3 4)))
Failed.

Example: Membership

• Recursive and hierarchical facts allow us to solve some
interesting problems in Logic

• As a first example, let’s declare facts for membership of
an element in a list

logic> (query (in 1 (1 2 3 4)))
Success!
logic> (query (in 5 (1 2 3 4)))
Failed.

(demo)

Example: Membership

• Recursive and hierarchical facts allow us to solve some
interesting problems in Logic

• As a first example, let’s declare facts for membership of
an element in a list

logic> (query (in 1 (1 2 3 4)))
Success!
logic> (query (in 5 (1 2 3 4)))
Failed.

(demo)

logic> (fact (in ?elem (?elem . ?rest)))
logic> (fact (in ?elem (?first . ?rest))
 (in ?elem ?rest))

Example: Membership

• Recursive and hierarchical facts allow us to solve some
interesting problems in Logic

• As a first example, let’s declare facts for membership of
an element in a list

logic> (query (in 1 (1 2 3 4)))
Success!
logic> (query (in 5 (1 2 3 4)))
Failed.

(demo)

logic> (query (in ?x (1 2 3 4)))
Success!
x: 1
x: 2
x: 3
x: 4

logic> (fact (in ?elem (?elem . ?rest)))
logic> (fact (in ?elem (?first . ?rest))
 (in ?elem ?rest))

Example: Appending Lists

Example: Appending Lists

• Let’s declare facts for appending two lists together to
form a third list

Example: Appending Lists

• Let’s declare facts for appending two lists together to
form a third list

logic> (query (append (1 2) (3 4) (1 2 3 4)))

Example: Appending Lists

• Let’s declare facts for appending two lists together to
form a third list

logic> (query (append (1 2) (3 4) (1 2 3 4)))
Success!

Example: Appending Lists

• Let’s declare facts for appending two lists together to
form a third list

logic> (query (append (1 2) (3 4) (1 2 3 4)))
Success!
logic> (query (append (1 2) (3 4 5) (1 2 3 4)))

Example: Appending Lists

• Let’s declare facts for appending two lists together to
form a third list

logic> (query (append (1 2) (3 4) (1 2 3 4)))
Success!
logic> (query (append (1 2) (3 4 5) (1 2 3 4)))
Failed.

Example: Appending Lists

• Let’s declare facts for appending two lists together to
form a third list

logic> (query (append (1 2) (3 4) (1 2 3 4)))
Success!
logic> (query (append (1 2) (3 4 5) (1 2 3 4)))
Failed.

(demo)

Example: Appending Lists

• Let’s declare facts for appending two lists together to
form a third list

logic> (query (append (1 2) (3 4) (1 2 3 4)))
Success!
logic> (query (append (1 2) (3 4 5) (1 2 3 4)))
Failed.

(demo)

logic> (fact (append () ?lst ?lst))
logic> (fact (append (?first . ?rest) ?lst (?first . ?rest+lst))
 (append ?rest ?lst ?rest+lst))

Example: Appending Lists

• Let’s declare facts for appending two lists together to
form a third list

logic> (query (append (1 2) (3 4) (1 2 3 4)))
Success!
logic> (query (append (1 2) (3 4 5) (1 2 3 4)))
Failed.

(demo)

logic> (query (append ?lst1 ?lst2 (1 2 3 4)))
Success!
lst1: () lst2: (1 2 3 4)
lst1: (1) lst2: (2 3 4)
lst1: (1 2) lst2: (3 4)
lst1: (1 2 3) lst2: (4)
lst1: (1 2 3 4) lst2: ()

logic> (fact (append () ?lst ?lst))
logic> (fact (append (?first . ?rest) ?lst (?first . ?rest+lst))
 (append ?rest ?lst ?rest+lst))

In two different ways

Let’s Color Australia

Map Coloring Way #1

Map Coloring Way #1

• Idea: Create a variable for the color of each region

Map Coloring Way #1

• Idea: Create a variable for the color of each region
• We have to make sure each variable is assigned to one

of the symbols red, green, or blue

Map Coloring Way #1

• Idea: Create a variable for the color of each region
• We have to make sure each variable is assigned to one

of the symbols red, green, or blue
• Then, we have to make sure the variables for bordering

regions are not equal

Map Coloring Way #1

• Idea: Create a variable for the color of each region
• We have to make sure each variable is assigned to one

of the symbols red, green, or blue
• Then, we have to make sure the variables for bordering

regions are not equal

• We can pretty closely follow what we wrote at the
beginning of lecture:

Map Coloring Way #1

• Idea: Create a variable for the color of each region
• We have to make sure each variable is assigned to one

of the symbols red, green, or blue
• Then, we have to make sure the variables for bordering

regions are not equal

• We can pretty closely follow what we wrote at the
beginning of lecture:

Declarative map coloring idea:
Find a solution where:
- All regions of the map are colored
- No neighboring regions have the same color

Map Coloring Way #1

• Idea: Create a variable for the color of each region
• We have to make sure each variable is assigned to one

of the symbols red, green, or blue
• Then, we have to make sure the variables for bordering

regions are not equal

• We can pretty closely follow what we wrote at the
beginning of lecture:

(demo)

Declarative map coloring idea:
Find a solution where:
- All regions of the map are colored
- No neighboring regions have the same color

Map Coloring Way #1

Map Coloring Way #1

Find a solution where:
- All regions of the map are colored
- No neighboring regions have the same color

Map Coloring Way #1

logic> (query (in ?NSW (red green blue))
 (in ?NT (red green blue))
 (in ?Q (red green blue))
 (in ?SA (red green blue))
 (in ?T (red green blue))
 (in ?V (red green blue))
 (in ?WA (red green blue))
 (not (equal ?NSW ?Q))
 (not (equal ?NSW ?SA))
 (not (equal ?NSW ?V))
 (not (equal ?NT ?Q))
 (not (equal ?NT ?SA))
 (not (equal ?NT ?WA))
 (not (equal ?Q ?SA))
 (not (equal ?SA ?WA))
 (not (equal ?SA ?V)))

Find a solution where:
- All regions of the map are colored
- No neighboring regions have the same color

Map Coloring Way #1

logic> (query (in ?NSW (red green blue))
 (in ?NT (red green blue))
 (in ?Q (red green blue))
 (in ?SA (red green blue))
 (in ?T (red green blue))
 (in ?V (red green blue))
 (in ?WA (red green blue))
 (not (equal ?NSW ?Q))
 (not (equal ?NSW ?SA))
 (not (equal ?NSW ?V))
 (not (equal ?NT ?Q))
 (not (equal ?NT ?SA))
 (not (equal ?NT ?WA))
 (not (equal ?Q ?SA))
 (not (equal ?SA ?WA))
 (not (equal ?SA ?V)))

Find a solution where:
- All regions of the map are colored
- No neighboring regions have the same color

Map Coloring Way #1

logic> (query (in ?NSW (red green blue))
 (in ?NT (red green blue))
 (in ?Q (red green blue))
 (in ?SA (red green blue))
 (in ?T (red green blue))
 (in ?V (red green blue))
 (in ?WA (red green blue))
 (not (equal ?NSW ?Q))
 (not (equal ?NSW ?SA))
 (not (equal ?NSW ?V))
 (not (equal ?NT ?Q))
 (not (equal ?NT ?SA))
 (not (equal ?NT ?WA))
 (not (equal ?Q ?SA))
 (not (equal ?SA ?WA))
 (not (equal ?SA ?V)))

Find a solution where:
- All regions of the map are colored
- No neighboring regions have the same color

Map Coloring Way #2

Map Coloring Way #2

• Solution #1 was simple and allowed us to directly follow
our original idea

Map Coloring Way #2

• Solution #1 was simple and allowed us to directly follow
our original idea

• However, it wasn’t an elegant or efficient solution

Map Coloring Way #2

• Solution #1 was simple and allowed us to directly follow
our original idea

• However, it wasn’t an elegant or efficient solution
• Lots of repetition

Map Coloring Way #2

• Solution #1 was simple and allowed us to directly follow
our original idea

• However, it wasn’t an elegant or efficient solution
• Lots of repetition
• No separation between data and program

Map Coloring Way #2

• Solution #1 was simple and allowed us to directly follow
our original idea

• However, it wasn’t an elegant or efficient solution
• Lots of repetition
• No separation between data and program
• As a result, only works for this specific map

Map Coloring Way #2

• Solution #1 was simple and allowed us to directly follow
our original idea

• However, it wasn’t an elegant or efficient solution
• Lots of repetition
• No separation between data and program
• As a result, only works for this specific map

• Let’s look at a more complicated and clever solution

Map Coloring Way #2

• Solution #1 was simple and allowed us to directly follow
our original idea

• However, it wasn’t an elegant or efficient solution
• Lots of repetition
• No separation between data and program
• As a result, only works for this specific map

• Let’s look at a more complicated and clever solution
• We will first declare our data, which is our map

Map Coloring Way #2

• Solution #1 was simple and allowed us to directly follow
our original idea

• However, it wasn’t an elegant or efficient solution
• Lots of repetition
• No separation between data and program
• As a result, only works for this specific map

• Let’s look at a more complicated and clever solution
• We will first declare our data, which is our map
• We will then try and find assignments with no conflicts

Map Coloring Way #2

• Solution #1 was simple and allowed us to directly follow
our original idea

• However, it wasn’t an elegant or efficient solution
• Lots of repetition
• No separation between data and program
• As a result, only works for this specific map

• Let’s look at a more complicated and clever solution
• We will first declare our data, which is our map
• We will then try and find assignments with no conflicts
• This way, our program does not repeat itself, and will

be general to any map!

Map Coloring Way #2

• Solution #1 was simple and allowed us to directly follow
our original idea

• However, it wasn’t an elegant or efficient solution
• Lots of repetition
• No separation between data and program
• As a result, only works for this specific map

• Let’s look at a more complicated and clever solution
• We will first declare our data, which is our map
• We will then try and find assignments with no conflicts
• This way, our program does not repeat itself, and will

be general to any map!

(demo)

Summary

Summary

• We learned about declarative programming today

Summary

• We learned about declarative programming today
• A completely different programming paradigm where our

programs specify what properties solutions should
satisfy rather than how to find a solution

Summary

• We learned about declarative programming today
• A completely different programming paradigm where our

programs specify what properties solutions should
satisfy rather than how to find a solution

• This allows us to solve some problems in an easier and
more intuitive manner

Summary

• We learned about declarative programming today
• A completely different programming paradigm where our

programs specify what properties solutions should
satisfy rather than how to find a solution

• This allows us to solve some problems in an easier and
more intuitive manner

• We learned Logic, a declarative language

Summary

• We learned about declarative programming today
• A completely different programming paradigm where our

programs specify what properties solutions should
satisfy rather than how to find a solution

• This allows us to solve some problems in an easier and
more intuitive manner

• We learned Logic, a declarative language
• Logic consists of facts, which declare relations that

are true, and queries, which ask if relations are true

Summary

• We learned about declarative programming today
• A completely different programming paradigm where our

programs specify what properties solutions should
satisfy rather than how to find a solution

• This allows us to solve some problems in an easier and
more intuitive manner

• We learned Logic, a declarative language
• Logic consists of facts, which declare relations that

are true, and queries, which ask if relations are true
• Recursive and hierarchical facts allow us to solve many

interesting problems

Summary

• We learned about declarative programming today
• A completely different programming paradigm where our

programs specify what properties solutions should
satisfy rather than how to find a solution

• This allows us to solve some problems in an easier and
more intuitive manner

• We learned Logic, a declarative language
• Logic consists of facts, which declare relations that

are true, and queries, which ask if relations are true
• Recursive and hierarchical facts allow us to solve many

interesting problems
• This is very different idea, so you’ll have to practice!

