Lecture 24: Logic II
Brian Hou August 2, 2016

Announcements

- Project 4 is due Friday ($8 / 5$)
- Finish through Part II today for 1 EC point
- Homework 9 is due Wednesday (8/3)
- Quiz 9 on Thursday (8/4) at the beginning of lecture - Will cover Logic
- Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB - Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
- Ants composition revisions due Saturday (8/6)
- Scheme Recursive Art Contest is open! Submissions due 8/9
- Potluck II on $8 / 10$! 5-8pm (or later) in Wozniak Lounge
- Bring food and board games!

Roadmap	
Introduction	This week (Paradigms), the goals are: - To study examples of paradigms that are very different from what we have seen so far - To expand our definition of what counts as programming
Functions	
Data	
Mutability	
Objects	
Interpretation	
Paradigms	
Applications	

Anagram
Did you mean: nag a ram?

def anagram(s):
if $\operatorname{len}(s)=0$:
return [[]]
result = []
anagrams $=$ anagram(s[1:])
for x in anagrams:
for i in range ($0, \operatorname{len}(x)+1$):
new_anagram $=x[: i]+[s[0]]+x[i:]$ result.append(new_anagram)
return result

Declarative Anagrams (demo)
```logic> (fact (insert ?a ?r (?a . ?r))) logic> (fact (insert ?a (?b . ?r) (?b . ?s)) (insert ?a ?r ?s)) logic> (fact (anagram () ())) logic> (fact (anagram (?a . ?r) ?b) (anagram ?r ?s) (insert ?a ?s ?b)) logic> (query (anagram ?s (s t a r)))```


Palindromes



## Declarative Programming

- In declarative programming, we tell the computer what a solution looks like, rather than how to get the solution
- If we describe a solution in two different ways, will the computer take the same amount of time to compute a solution?
- Probably not...


Arithmetic


Number Representation
Logic does not have numbers, but does have Scheme lists   Let's create our own number representation!   We'll limit ourselves to non-negative integers   We can represent the numbers   $0,1,2,3, \ldots$ as   $0,(+10),(+1(+10)),(+1(+1(+10))$,   This is still a symbolic representation! Logic doesn't know that these are Scheme expressions that would evaluate to that number


Addition	( demo )
- Mathematical facts: $\cdot 0+n=n$   - In order for $(x+1)+y=(z+1)$ to be true, $x+y=z$ ```logic> (fact (+ 0 ?n ?n)) logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z)) (+ ?x ?y ?z)) logic> (query (+ (+ 1(+ 1 (+ 1 0)))```	




Arithmetic
(demo)

- We've implemented the four basic arithmetic operations!
- We can now ask Logic about all the different ways to compute the number 6
logic> (query (?op ?arg1 ?arg2
$(+1(+1(+1(+1(+1(+10)))))))$


## Summary

- Some problems can be solved more easily or concisely with declarative programming than imperative programming
- However, just because the computer is the one solving the problem doesn't mean that we can write any declarative program and it will "just work"
- As declarative programmers, we (eventually) should understand how the underlying problem solver works
- This semester, just focus on writing declarative programs; no need to worry about the underlying solver yet!

