
Brian Hou
August 2, 2016

Lecture 24: Logic II

Announcements

• Project 4 is due Friday (8/5)

• Finish through Part II today for 1 EC point

• Homework 9 is due Wednesday (8/3)

• Quiz 9 on Thursday (8/4) at the beginning of lecture
• Will cover Logic

• Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB
• Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle

• Ants composition revisions due Saturday (8/6)

• Scheme Recursive Art Contest is open! Submissions due 8/9

• Potluck II on 8/10! 5-8pm (or later) in Wozniak Lounge

• Bring food and board games!

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Paradigms), the goals are:

• To study examples of paradigms
that are very different from what
we have seen so far

• To expand our definition of what
counts as programming

Anagram

Did you mean: nag a ram?

Anagrams

at

at

ta

cat

act

atc

cta

tca

tac

cat

Imperative Anagrams

def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
 anagrams = anagram(s[1:])
 for x in anagrams:
 for i in range(0, len(x) + 1):
 new_anagram = x[:i] + [s[0]] + x[i:]
 result.append(new_anagram)
 return result

(demo)

Declarative Anagrams (demo)

logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

logic> (fact (anagram () ()))
logic> (fact (anagram (?a . ?r) ?b)
 (anagram ?r ?s)
 (insert ?a ?s ?b))

logic> (query (anagram ?s (s t a r)))

Palindromes

Palindromes (demo)

logic> (fact (palindrome ?s)
 (reverse ?s ?s))
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev)
 (append ?rest-rev (?first) ?rev))

• A palindrome is a sequence that is the same when read
backward and forward

• Examples: "racecar", "senile felines", "too hot to hoot"

Declarative Programming

• In declarative programming, we tell the computer what a
solution looks like, rather than how to get the solution

• If we describe a solution in two different ways, will the
computer take the same amount of time to compute a
solution?

• Probably not...

Reverse

logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev)
 (append ?rest-rev (?first) ?rev))

logic> (fact (accrev (?first . ?rest) ?acc ?rev)
 (accrev ?rest (?first . ?acc) ?rev))
logic> (fact (accrev () ?acc ?acc))
logic> (fact (accrev ?s ?rev)
 (accrev ?s () ?rev))

(demo)

Break!

Arithmetic

Number Representation

• Logic does not have numbers, but does have Scheme lists

• Let's create our own number representation!

• We'll limit ourselves to non-negative integers

• We can represent the numbers

• 0, 1, 2, 3, ... as

• 0, (+ 1 0), (+ 1 (+ 1 0)), (+ 1 (+ 1 (+ 1 0))), ...

• This is still a symbolic representation! Logic doesn't
know that these are Scheme expressions that would evaluate
to that number

Addition

• Mathematical facts:

• 0 + n = n

• In order for (x + 1) + y = (z + 1) to be true, x + y = z

logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
 (+ ?x ?y ?z))
logic> (query (+
 (+ 1 (+ 1 (+ 1 0)))
 (+ 1 (+ 1 0))
 ?z))

(demo) Multiplication

• Mathematical facts:

• 0 * n = 0

• In order for (x + 1) * y = z to be true, x * y + y = z

logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
 (+ ?xy ?y ?z)
 (* ?x ?y ?xy))
logic> (query (* (+ 1 (+ 1 (+ 1 0))) ?y
 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 0))))))))

(demo)

Subtraction and Division

• Mathematical facts:

• Subtraction is the inverse of addition

• In order for x - y = z, y + z = x

• Division is the inverse of multiplication

• In order for x / y = z, y * z = x (assuming x is
divisible by y)

logic> (fact (- ?x ?y ?z)
 (+ ?y ?z ?x))
logic> (fact (/ ?x ?y ?z)
 (* ?y ?z ?x))

(demo) Arithmetic

• We've implemented the four basic arithmetic operations!

• We can now ask Logic about all the different ways to
compute the number 6

logic> (query (?op ?arg1 ?arg2
 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 0))))))))

(demo)

Summary

• Some problems can be solved more easily or concisely with
declarative programming than imperative programming

• However, just because the computer is the one solving the
problem doesn't mean that we can write any declarative
program and it will "just work"

• As declarative programmers, we (eventually) should
understand how the underlying problem solver works

• This semester, just focus on writing declarative programs;
no need to worry about the underlying solver yet!

