
Brian Hou
August 2, 2016

Lecture 24: Logic II

Announcements

Announcements

• Project 4 is due Friday (8/5)

Announcements

• Project 4 is due Friday (8/5)
• Finish through Part II today for 1 EC point

Announcements

• Project 4 is due Friday (8/5)
• Finish through Part II today for 1 EC point

• Homework 9 is due Wednesday (8/3)

Announcements

• Project 4 is due Friday (8/5)
• Finish through Part II today for 1 EC point

• Homework 9 is due Wednesday (8/3)
• Quiz 9 on Thursday (8/4) at the beginning of lecture

Announcements

• Project 4 is due Friday (8/5)
• Finish through Part II today for 1 EC point

• Homework 9 is due Wednesday (8/3)
• Quiz 9 on Thursday (8/4) at the beginning of lecture

• Will cover Logic

Announcements

• Project 4 is due Friday (8/5)
• Finish through Part II today for 1 EC point

• Homework 9 is due Wednesday (8/3)
• Quiz 9 on Thursday (8/4) at the beginning of lecture

• Will cover Logic
• Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB

Announcements

• Project 4 is due Friday (8/5)
• Finish through Part II today for 1 EC point

• Homework 9 is due Wednesday (8/3)
• Quiz 9 on Thursday (8/4) at the beginning of lecture

• Will cover Logic
• Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB

• Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle

Announcements

• Project 4 is due Friday (8/5)
• Finish through Part II today for 1 EC point

• Homework 9 is due Wednesday (8/3)
• Quiz 9 on Thursday (8/4) at the beginning of lecture

• Will cover Logic
• Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB

• Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
• Ants composition revisions due Saturday (8/6)

Announcements

• Project 4 is due Friday (8/5)
• Finish through Part II today for 1 EC point

• Homework 9 is due Wednesday (8/3)
• Quiz 9 on Thursday (8/4) at the beginning of lecture

• Will cover Logic
• Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB

• Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
• Ants composition revisions due Saturday (8/6)
• Scheme Recursive Art Contest is open! Submissions due 8/9

Announcements

• Project 4 is due Friday (8/5)
• Finish through Part II today for 1 EC point

• Homework 9 is due Wednesday (8/3)
• Quiz 9 on Thursday (8/4) at the beginning of lecture

• Will cover Logic
• Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB

• Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
• Ants composition revisions due Saturday (8/6)
• Scheme Recursive Art Contest is open! Submissions due 8/9
• Potluck II on 8/10! 5-8pm (or later) in Wozniak Lounge

Announcements

• Project 4 is due Friday (8/5)
• Finish through Part II today for 1 EC point

• Homework 9 is due Wednesday (8/3)
• Quiz 9 on Thursday (8/4) at the beginning of lecture

• Will cover Logic
• Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB

• Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
• Ants composition revisions due Saturday (8/6)
• Scheme Recursive Art Contest is open! Submissions due 8/9
• Potluck II on 8/10! 5-8pm (or later) in Wozniak Lounge

• Bring food and board games!

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Paradigms), the goals are:

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Paradigms), the goals are:
• To study examples of paradigms

that are very different from what
we have seen so far

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Paradigms), the goals are:
• To study examples of paradigms

that are very different from what
we have seen so far

• To expand our definition of what
counts as programming

Anagram

Did you mean: nag a ram?

Anagrams

Anagrams

cat

Anagrams

atcat

Anagrams

at

at

ta

cat

Anagrams

at

at

ta

cat

cat

Anagrams

at

at

ta

cat

act

cat

Anagrams

at

at

ta

cat

act

atc

cat

Anagrams

at

at

ta

cat

act

atc

cta

cat

Anagrams

at

at

ta

cat

act

atc

cta

tca

cat

Anagrams

at

at

ta

cat

act

atc

cta

tca

tac

cat

Imperative Anagrams

Imperative Anagrams

def anagram(s):

Imperative Anagrams

def anagram(s):
 if len(s) == 0:

Imperative Anagrams

def anagram(s):
 if len(s) == 0:
 return [[]]

Imperative Anagrams

def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []

Imperative Anagrams

def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
 anagrams = anagram(s[1:])

Imperative Anagrams

def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
 anagrams = anagram(s[1:])
 for x in anagrams:

Imperative Anagrams

def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
 anagrams = anagram(s[1:])
 for x in anagrams:
 for i in range(0, len(x) + 1):

Imperative Anagrams

def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
 anagrams = anagram(s[1:])
 for x in anagrams:
 for i in range(0, len(x) + 1):
 new_anagram = x[:i] + [s[0]] + x[i:]

Imperative Anagrams

def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
 anagrams = anagram(s[1:])
 for x in anagrams:
 for i in range(0, len(x) + 1):
 new_anagram = x[:i] + [s[0]] + x[i:]
 result.append(new_anagram)

Imperative Anagrams

def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
 anagrams = anagram(s[1:])
 for x in anagrams:
 for i in range(0, len(x) + 1):
 new_anagram = x[:i] + [s[0]] + x[i:]
 result.append(new_anagram)
 return result

Imperative Anagrams

def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
 anagrams = anagram(s[1:])
 for x in anagrams:
 for i in range(0, len(x) + 1):
 new_anagram = x[:i] + [s[0]] + x[i:]
 result.append(new_anagram)
 return result

(demo)

Declarative Anagrams

Declarative Anagrams

logic> (fact (insert ?a ?r (?a . ?r)))

Declarative Anagrams

logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))

Declarative Anagrams

logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

Declarative Anagrams (demo)

logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

Declarative Anagrams (demo)

logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

logic> (fact (anagram () ()))

Declarative Anagrams (demo)

logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

logic> (fact (anagram () ()))
logic> (fact (anagram (?a . ?r) ?b)

Declarative Anagrams (demo)

logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

logic> (fact (anagram () ()))
logic> (fact (anagram (?a . ?r) ?b)
 (anagram ?r ?s)

Declarative Anagrams (demo)

logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

logic> (fact (anagram () ()))
logic> (fact (anagram (?a . ?r) ?b)
 (anagram ?r ?s)
 (insert ?a ?s ?b))

logic> (query (anagram ?s (s t a r)))

Palindromes

Palindromes

Palindromes

• A palindrome is a sequence that is the same when read
backward and forward

Palindromes

• A palindrome is a sequence that is the same when read
backward and forward

• Examples: "racecar", "senile felines", "too hot to hoot"

Palindromes

• A palindrome is a sequence that is the same when read
backward and forward

• Examples: "racecar", "senile felines", "too hot to hoot"

Palindromes

• A palindrome is a sequence that is the same when read
backward and forward

• Examples: "racecar", "senile felines", "too hot to hoot"

Palindromes

logic> (fact (palindrome ?s)

• A palindrome is a sequence that is the same when read
backward and forward

• Examples: "racecar", "senile felines", "too hot to hoot"

Palindromes

logic> (fact (palindrome ?s)
 (reverse ?s ?s))

• A palindrome is a sequence that is the same when read
backward and forward

• Examples: "racecar", "senile felines", "too hot to hoot"

Palindromes

logic> (fact (palindrome ?s)
 (reverse ?s ?s))
logic> (fact (reverse () ()))

• A palindrome is a sequence that is the same when read
backward and forward

• Examples: "racecar", "senile felines", "too hot to hoot"

Palindromes

logic> (fact (palindrome ?s)
 (reverse ?s ?s))
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)

• A palindrome is a sequence that is the same when read
backward and forward

• Examples: "racecar", "senile felines", "too hot to hoot"

Palindromes

logic> (fact (palindrome ?s)
 (reverse ?s ?s))
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev)

• A palindrome is a sequence that is the same when read
backward and forward

• Examples: "racecar", "senile felines", "too hot to hoot"

Palindromes

logic> (fact (palindrome ?s)
 (reverse ?s ?s))
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev)
 (append ?rest-rev (?first) ?rev))

• A palindrome is a sequence that is the same when read
backward and forward

• Examples: "racecar", "senile felines", "too hot to hoot"

Palindromes (demo)

logic> (fact (palindrome ?s)
 (reverse ?s ?s))
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev)
 (append ?rest-rev (?first) ?rev))

• A palindrome is a sequence that is the same when read
backward and forward

• Examples: "racecar", "senile felines", "too hot to hoot"

Declarative Programming

Declarative Programming

• In declarative programming, we tell the computer what a
solution looks like, rather than how to get the solution

Declarative Programming

• In declarative programming, we tell the computer what a
solution looks like, rather than how to get the solution

• If we describe a solution in two different ways, will the
computer take the same amount of time to compute a
solution?

Declarative Programming

• In declarative programming, we tell the computer what a
solution looks like, rather than how to get the solution

• If we describe a solution in two different ways, will the
computer take the same amount of time to compute a
solution?

• Probably not...

Reverse

Reverse

logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev)
 (append ?rest-rev (?first) ?rev))

Reverse

logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev)
 (append ?rest-rev (?first) ?rev))

logic> (fact (accrev (?first . ?rest) ?acc ?rev)

Reverse

logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev)
 (append ?rest-rev (?first) ?rev))

logic> (fact (accrev (?first . ?rest) ?acc ?rev)
 (accrev ?rest (?first . ?acc) ?rev))

Reverse

logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev)
 (append ?rest-rev (?first) ?rev))

logic> (fact (accrev (?first . ?rest) ?acc ?rev)
 (accrev ?rest (?first . ?acc) ?rev))
logic> (fact (accrev () ?acc ?acc))

Reverse

logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev)
 (append ?rest-rev (?first) ?rev))

logic> (fact (accrev (?first . ?rest) ?acc ?rev)
 (accrev ?rest (?first . ?acc) ?rev))
logic> (fact (accrev () ?acc ?acc))
logic> (fact (accrev ?s ?rev)

Reverse

logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev)
 (append ?rest-rev (?first) ?rev))

logic> (fact (accrev (?first . ?rest) ?acc ?rev)
 (accrev ?rest (?first . ?acc) ?rev))
logic> (fact (accrev () ?acc ?acc))
logic> (fact (accrev ?s ?rev)
 (accrev ?s () ?rev))

Reverse

logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev)
 (append ?rest-rev (?first) ?rev))

logic> (fact (accrev (?first . ?rest) ?acc ?rev)
 (accrev ?rest (?first . ?acc) ?rev))
logic> (fact (accrev () ?acc ?acc))
logic> (fact (accrev ?s ?rev)
 (accrev ?s () ?rev))

(demo)

Break!

Arithmetic

Number Representation

Number Representation

• Logic does not have numbers, but does have Scheme lists

Number Representation

• Logic does not have numbers, but does have Scheme lists

• Let's create our own number representation!

Number Representation

• Logic does not have numbers, but does have Scheme lists

• Let's create our own number representation!

• We'll limit ourselves to non-negative integers

Number Representation

• Logic does not have numbers, but does have Scheme lists

• Let's create our own number representation!

• We'll limit ourselves to non-negative integers

• We can represent the numbers

Number Representation

• Logic does not have numbers, but does have Scheme lists

• Let's create our own number representation!

• We'll limit ourselves to non-negative integers

• We can represent the numbers

• 0, 1, 2, 3, ... as

Number Representation

• Logic does not have numbers, but does have Scheme lists

• Let's create our own number representation!

• We'll limit ourselves to non-negative integers

• We can represent the numbers

• 0, 1, 2, 3, ... as

• 0, (+ 1 0), (+ 1 (+ 1 0)), (+ 1 (+ 1 (+ 1 0))), ...

Number Representation

• Logic does not have numbers, but does have Scheme lists

• Let's create our own number representation!

• We'll limit ourselves to non-negative integers

• We can represent the numbers

• 0, 1, 2, 3, ... as

• 0, (+ 1 0), (+ 1 (+ 1 0)), (+ 1 (+ 1 (+ 1 0))), ...

• This is still a symbolic representation! Logic doesn't
know that these are Scheme expressions that would evaluate
to that number

Addition

Addition

• Mathematical facts:

Addition

• Mathematical facts:

• 0 + n = n

Addition

• Mathematical facts:

• 0 + n = n

• In order for (x + 1) + y = (z + 1) to be true, x + y = z

Addition

• Mathematical facts:

• 0 + n = n

• In order for (x + 1) + y = (z + 1) to be true, x + y = z

logic> (fact (+ 0 ?n ?n))

Addition

• Mathematical facts:

• 0 + n = n

• In order for (x + 1) + y = (z + 1) to be true, x + y = z

logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))

Addition

• Mathematical facts:

• 0 + n = n

• In order for (x + 1) + y = (z + 1) to be true, x + y = z

logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
 (+ ?x ?y ?z))

Addition

• Mathematical facts:

• 0 + n = n

• In order for (x + 1) + y = (z + 1) to be true, x + y = z

logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
 (+ ?x ?y ?z))

(demo)

Addition

• Mathematical facts:

• 0 + n = n

• In order for (x + 1) + y = (z + 1) to be true, x + y = z

logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
 (+ ?x ?y ?z))
logic> (query (+

(demo)

Addition

• Mathematical facts:

• 0 + n = n

• In order for (x + 1) + y = (z + 1) to be true, x + y = z

logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
 (+ ?x ?y ?z))
logic> (query (+
 (+ 1 (+ 1 (+ 1 0)))

(demo)

Addition

• Mathematical facts:

• 0 + n = n

• In order for (x + 1) + y = (z + 1) to be true, x + y = z

logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
 (+ ?x ?y ?z))
logic> (query (+
 (+ 1 (+ 1 (+ 1 0)))
 (+ 1 (+ 1 0))

(demo)

Addition

• Mathematical facts:

• 0 + n = n

• In order for (x + 1) + y = (z + 1) to be true, x + y = z

logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
 (+ ?x ?y ?z))
logic> (query (+
 (+ 1 (+ 1 (+ 1 0)))
 (+ 1 (+ 1 0))
 ?z))

(demo)

Multiplication

Multiplication

• Mathematical facts:

Multiplication

• Mathematical facts:

• 0 * n = 0

Multiplication

• Mathematical facts:

• 0 * n = 0

logic> (fact (* 0 ?n 0))

Multiplication

• Mathematical facts:

• 0 * n = 0

• In order for (x + 1) * y = z to be true, x * y + y = z

logic> (fact (* 0 ?n 0))

Multiplication

• Mathematical facts:

• 0 * n = 0

• In order for (x + 1) * y = z to be true, x * y + y = z

logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)

Multiplication

• Mathematical facts:

• 0 * n = 0

• In order for (x + 1) * y = z to be true, x * y + y = z

logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
 (+ ?xy ?y ?z)

Multiplication

• Mathematical facts:

• 0 * n = 0

• In order for (x + 1) * y = z to be true, x * y + y = z

logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
 (+ ?xy ?y ?z)
 (* ?x ?y ?xy))

Multiplication

• Mathematical facts:

• 0 * n = 0

• In order for (x + 1) * y = z to be true, x * y + y = z

logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
 (+ ?xy ?y ?z)
 (* ?x ?y ?xy))

(demo)

Multiplication

• Mathematical facts:

• 0 * n = 0

• In order for (x + 1) * y = z to be true, x * y + y = z

logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
 (+ ?xy ?y ?z)
 (* ?x ?y ?xy))
logic> (query (* (+ 1 (+ 1 (+ 1 0))) ?y

(demo)

Multiplication

• Mathematical facts:

• 0 * n = 0

• In order for (x + 1) * y = z to be true, x * y + y = z

logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
 (+ ?xy ?y ?z)
 (* ?x ?y ?xy))
logic> (query (* (+ 1 (+ 1 (+ 1 0))) ?y
 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 0))))))))

(demo)

Subtraction and Division

Subtraction and Division

• Mathematical facts:

Subtraction and Division

• Mathematical facts:

• Subtraction is the inverse of addition

Subtraction and Division

• Mathematical facts:

• Subtraction is the inverse of addition

• In order for x - y = z, y + z = x

Subtraction and Division

• Mathematical facts:

• Subtraction is the inverse of addition

• In order for x - y = z, y + z = x

logic> (fact (- ?x ?y ?z)

Subtraction and Division

• Mathematical facts:

• Subtraction is the inverse of addition

• In order for x - y = z, y + z = x

logic> (fact (- ?x ?y ?z)
 (+ ?y ?z ?x))

Subtraction and Division

• Mathematical facts:

• Subtraction is the inverse of addition

• In order for x - y = z, y + z = x

• Division is the inverse of multiplication

logic> (fact (- ?x ?y ?z)
 (+ ?y ?z ?x))

Subtraction and Division

• Mathematical facts:

• Subtraction is the inverse of addition

• In order for x - y = z, y + z = x

• Division is the inverse of multiplication

• In order for x / y = z, y * z = x (assuming x is
divisible by y)

logic> (fact (- ?x ?y ?z)
 (+ ?y ?z ?x))

Subtraction and Division

• Mathematical facts:

• Subtraction is the inverse of addition

• In order for x - y = z, y + z = x

• Division is the inverse of multiplication

• In order for x / y = z, y * z = x (assuming x is
divisible by y)

logic> (fact (- ?x ?y ?z)
 (+ ?y ?z ?x))
logic> (fact (/ ?x ?y ?z)

Subtraction and Division

• Mathematical facts:

• Subtraction is the inverse of addition

• In order for x - y = z, y + z = x

• Division is the inverse of multiplication

• In order for x / y = z, y * z = x (assuming x is
divisible by y)

logic> (fact (- ?x ?y ?z)
 (+ ?y ?z ?x))
logic> (fact (/ ?x ?y ?z)
 (* ?y ?z ?x))

Subtraction and Division

• Mathematical facts:

• Subtraction is the inverse of addition

• In order for x - y = z, y + z = x

• Division is the inverse of multiplication

• In order for x / y = z, y * z = x (assuming x is
divisible by y)

logic> (fact (- ?x ?y ?z)
 (+ ?y ?z ?x))
logic> (fact (/ ?x ?y ?z)
 (* ?y ?z ?x))

(demo)

Arithmetic

Arithmetic

• We've implemented the four basic arithmetic operations!

Arithmetic

• We've implemented the four basic arithmetic operations!

(demo)

Arithmetic

• We've implemented the four basic arithmetic operations!

• We can now ask Logic about all the different ways to
compute the number 6

(demo)

Arithmetic

• We've implemented the four basic arithmetic operations!

• We can now ask Logic about all the different ways to
compute the number 6

logic> (query (?op ?arg1 ?arg2
 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 0))))))))

(demo)

Summary

Summary

• Some problems can be solved more easily or concisely with
declarative programming than imperative programming

Summary

• Some problems can be solved more easily or concisely with
declarative programming than imperative programming

• However, just because the computer is the one solving the
problem doesn't mean that we can write any declarative
program and it will "just work"

Summary

• Some problems can be solved more easily or concisely with
declarative programming than imperative programming

• However, just because the computer is the one solving the
problem doesn't mean that we can write any declarative
program and it will "just work"

• As declarative programmers, we (eventually) should
understand how the underlying problem solver works

Summary

• Some problems can be solved more easily or concisely with
declarative programming than imperative programming

• However, just because the computer is the one solving the
problem doesn't mean that we can write any declarative
program and it will "just work"

• As declarative programmers, we (eventually) should
understand how the underlying problem solver works

• This semester, just focus on writing declarative programs;
no need to worry about the underlying solver yet!

