Lecture 24: Logic II

Brian Hou
August 2, 2016

Announcements

Announcements

- Project 4 is due Friday (8/5)

Announcements

- Project 4 is due Friday (8/5)
- Finish through Part II today for 1 EC point

Announcements

- Project 4 is due Friday (8/5)
- Finish through Part II today for 1 EC point
- Homework 9 is due Wednesday (8/3)

Announcements

- Project 4 is due Friday (8/5)
- Finish through Part II today for 1 EC point
- Homework 9 is due Wednesday (8/3)
- Quiz 9 on Thursday (8/4) at the beginning of lecture

Announcements

- Project 4 is due Friday (8/5)
- Finish through Part II today for 1 EC point
- Homework 9 is due Wednesday (8/3)
- Quiz 9 on Thursday (8/4) at the beginning of lecture
- Will cover Logic

Announcements

- Project 4 is due Friday (8/5)
- Finish through Part II today for 1 EC point
- Homework 9 is due Wednesday (8/3)
- Quiz 9 on Thursday (8/4) at the beginning of lecture
- Will cover Logic
- Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB

Announcements

- Project 4 is due Friday (8/5)
- Finish through Part II today for 1 EC point
- Homework 9 is due Wednesday (8/3)
- Quiz 9 on Thursday (8/4) at the beginning of lecture
- Will cover Logic
- Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB
- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle

Announcements

- Project 4 is due Friday (8/5)
- Finish through Part II today for 1 EC point
- Homework 9 is due Wednesday (8/3)
- Quiz 9 on Thursday (8/4) at the beginning of lecture
- Will cover Logic
- Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB
- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
- Ants composition revisions due Saturday (8/6)

Announcements

- Project 4 is due Friday (8/5)
- Finish through Part II today for 1 EC point
- Homework 9 is due Wednesday (8/3)
- Quiz 9 on Thursday (8/4) at the beginning of lecture
- Will cover Logic
- Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB
- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
- Ants composition revisions due Saturday (8/6)
- Scheme Recursive Art Contest is open! Submissions due 8/9

Announcements

- Project 4 is due Friday (8/5)
- Finish through Part II today for 1 EC point
- Homework 9 is due Wednesday (8/3)
- Quiz 9 on Thursday (8/4) at the beginning of lecture
- Will cover Logic
- Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB
- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
- Ants composition revisions due Saturday (8/6)
- Scheme Recursive Art Contest is open! Submissions due 8/9
- Potluck II on 8/10! 5-8pm (or later) in Wozniak Lounge

Announcements

- Project 4 is due Friday (8/5)
- Finish through Part II today for 1 EC point
- Homework 9 is due Wednesday (8/3)
- Quiz 9 on Thursday (8/4) at the beginning of lecture
- Will cover Logic
- Final Review on Friday (8/5) from 11-12:30pm in 2050 VLSB
- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
- Ants composition revisions due Saturday (8/6)
- Scheme Recursive Art Contest is open! Submissions due 8/9
- Potluck II on 8/10! 5-8pm (or later) in Wozniak Lounge
- Bring food and board games!

Roadmap

Introduction

Functions
Data
Mutability
Objects
Interpretation
Paradigms
Applications

Roadmap

Introduction

Functions

- This week (Paradigms), the goals are:

Data
Mutability
Objects
Interpretation
Paradigms
Applications

Roadmap

Introduction

Functions
Data

Mutability
Objects
Interpretation
Paradigms
Applications

Roadmap

Introduction

Functions

Data

Mutability
Objects
Interpretation
Paradigms
Applications

- This week (Paradigms), the goals are:
- To study examples of paradigms that are very different from what we have seen so far
- To expand our definition of what counts as programming

Anagram

Did you mean: nag a ram?

Anagrams

Anagrams

cat

Anagrams

cat at

Anagrams

at
cat at
ta

Anagrams

cat

at
cat at
ta

Anagrams

Anagrams

at act
ta

Anagrams

cat at | | cat |
| :---: | :---: |
| | act |
| | |
| | atc |

Anagrams

$$
\begin{array}{cc}
& \text { cat } \\
\text { at } & \text { act } \\
& \text { atc } \\
\text { ta } & \text { tca }
\end{array}
$$

cat at

Anagrams

Imperative Anagrams

Imperative Anagrams

```
def anagram(s):
```


Imperative Anagrams

```
def anagram(s):
    if len(s) == 0:
```


Imperative Anagrams

```
def anagram(s):
    if len(s) == 0:
        return [[]]
```


Imperative Anagrams

```
def anagram(s):
    if len(s) == 0:
        return [[]]
    result = []
```


Imperative Anagrams

```
def anagram(s):
    if len(s) == 0:
        return [[]]
    result = []
    anagrams = anagram(s[1:])
```


Imperative Anagrams

```
def anagram(s):
    if len(s) == 0:
        return [[]]
    result = []
    anagrams = anagram(s[1:])
    for x in anagrams:
```


Imperative Anagrams

```
def anagram(s):
    if len(s) == 0:
        return [[]]
    result = []
    anagrams = anagram(s[1:])
    for x in anagrams:
        for i in range(0, len(x) + 1):
```


Imperative Anagrams

```
def anagram(s):
    if len(s) == 0:
        return [[]]
    result = []
    anagrams = anagram(s[1:])
    for x in anagrams:
        for i in range(0, len(x) + 1):
        new_anagram = x[:i] + [s[0]] + x[i:]
```


Imperative Anagrams

```
def anagram(s):
    if len(s) == 0:
        return [[]]
    result = []
    anagrams = anagram(s[1:])
    for x in anagrams:
        for i in range(0, len(x) + 1):
        new_anagram = x[:i] + [s[0]] + x[i:]
        result.append(new_anagram)
```


Imperative Anagrams

```
def anagram(s):
    if len(s) == 0:
        return [[]]
    result = []
    anagrams = anagram(s[1:])
    for x in anagrams:
        for i in range(0, len(x) + 1):
        new_anagram = x[:i] + [s[0]] + x[i:]
        result.append(new_anagram)
    return result
```


Imperative Anagrams

```
def anagram(s):
    if len(s) == 0:
        return [[]]
    result = []
    anagrams = anagram(s[1:])
    for x in anagrams:
        for i in range(0, len(x) + 1):
        new_anagram = x[:i] + [s[0]] + x[i:]
        result.append(new_anagram)
    return result
```


Declarative Anagrams

Declarative Anagrams

logic> (fact (insert ?a ?r (?a . ?r)))

Declarative Anagrams

```
logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
```


Declarative Anagrams

```
logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
    (insert ?a ?r ?s))
```


Declarative Anagrams

```
logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
    (insert ?a ?r ?s))
```


Declarative Anagrams

(demo)

$$
\begin{aligned}
& \begin{array}{l}
\text { logic> (fact (insert ?a ?r (?a . ?r))) } \\
\text { logic> (fact (insert ?a (?b . ?r) (?b : ?s)) } \\
\\
\text { (insert ?a ?r ?s)) }
\end{array} \\
& \text { logic> (fact (anagram () ())) }
\end{aligned}
$$

Declarative Anagrams

(demo)

```
logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
    (insert ?a ?r ?s))
logic> (fact (anagram () ()))
logic> (fact (anagram (?a . ?r) ?b)
```


Declarative Anagrams

```
logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
    (insert ?a ?r ?s))
logic> (fact (anagram () ()))
logic> (fact (anagram (?a . ?r) ?b)
    (anagram ?r ?s)
```


Declarative Anagrams

```
logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
    (insert ?a ?r ?s))
logic> (fact (anagram () ()))
logic> (fact (anagram (?a . ?r) ?b)
    (anagram ?r ?s)
    (insert ?a ?s ?b))
logic> (query (anagram ?s (s t a r)))
```

Palindromes

Palindromes

Palindromes

- A palindrome is a sequence that is the same when read backward and forward

Palindromes

- A palindrome is a sequence that is the same when read backward and forward
- Examples: "racecar"

Palindromes

- A palindrome is a sequence that is the same when read backward and forward
- Examples: "racecar", "senile felines"

Palindromes

- A palindrome is a sequence that is the same when read backward and forward
- Examples: "racecar", "senile felines", "too hot to hoot"

Palindromes

- A palindrome is a sequence that is the same when read backward and forward
- Examples: "racecar", "senile felines", "too hot to hoot"
logic> (fact (palindrome ?s)

Palindromes

- A palindrome is a sequence that is the same when read backward and forward
- Examples: "racecar", "senile felines", "too hot to hoot"
logic> (fact (palindrome ?s)
(reverse ?s ?s))

Palindromes

- A palindrome is a sequence that is the same when read backward and forward
- Examples: "racecar", "senile felines", "too hot to hoot"

```
logic> (fact (palindrome ?s)
    (reverse ?s ?s))
logic> (fact (reverse () ()))
```


Palindromes

- A palindrome is a sequence that is the same when read backward and forward
- Examples: "racecar", "senile felines", "too hot to hoot"

```
logic> (fact (palindrome ?s)
    (reverse ?s ?s))
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
```


Palindromes

- A palindrome is a sequence that is the same when read backward and forward
- Examples: "racecar", "senile felines", "too hot to hoot"

```
logic> (fact (palindrome ?s)
    (reverse ?s ?s))
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
    (reverse ?rest ?rest-rev)
```


Palindromes

- A palindrome is a sequence that is the same when read backward and forward
- Examples: "racecar", "senile felines", "too hot to hoot"

```
logic> (fact (palindrome ?s)
    (reverse ?s ?s))
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
    (reverse ?rest ?rest-rev)
    (append ?rest-rev (?first) ?rev))
```


Palindromes

(demo)

- A palindrome is a sequence that is the same when read backward and forward
- Examples: "racecar", "senile felines", "too hot to hoot"

```
logic> (fact (palindrome ?s)
    (reverse ?s ?s))
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
    (reverse ?rest ?rest-rev)
    (append ?rest-rev (?first) ?rev))
```


Declarative Programming

Declarative Programming

- In declarative programming, we tell the computer what a solution looks like, rather than how to get the solution

Declarative Programming

- In declarative programming, we tell the computer what a solution looks like, rather than how to get the solution
- If we describe a solution in two different ways, will the computer take the same amount of time to compute a solution?

Declarative Programming

- In declarative programming, we tell the computer what a solution looks like, rather than how to get the solution
- If we describe a solution in two different ways, will the computer take the same amount of time to compute a solution?
- Probably not...

Reverse

Reverse

$$
\begin{aligned}
\operatorname{logic>} \text { (fact } & \text { (reverse () ())) } \\
\text { logic> (fact } & \text { (reverse (?first . ?rest) ?rev) } \\
& (\text { reverse ?rest ?rest-rev) } \\
& (\text { append ?rest-rev (?first) ?rev)) }
\end{aligned}
$$

Reverse

$$
\left.\begin{array}{rl}
\operatorname{logic>} \text { (fact } & \text { (reverse () ())) } \\
\text { logic> (fact } & \text { (reverse (?first . ?rest) ?rev) } \\
& \text { (reverse ?rest ?rest-rev) } \\
& \text { (append ?rest-rev (?first) ?rev)) }
\end{array}\right\}
$$

Reverse

```
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
        (reverse ?rest ?rest-rev)
        (append ?rest-rev (?first) ?rev))
logic> (fact (accrev (?first . ?rest) ?acc ?rev)
    (accrev ?rest (?first . ?acc) ?rev))
```


Reverse

```
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
    (reverse ?rest ?rest-rev)
    (append ?rest-rev (?first) ?rev))
logic> (fact (accrev (?first . ?rest) ?acc ?rev)
    (accrev ?rest (?first . ?acc) ?rev))
logic> (fact (accrev () ?acc ?acc))
```


Reverse

```
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
    (reverse ?rest ?rest-rev)
    (append ?rest-rev (?first) ?rev))
logic> (fact (accrev (?first . ?rest) ?acc ?rev)
    (accrev ?rest (?first . ?acc) ?rev))
logic> (fact (accrev () ?acc ?acc))
logic> (fact (accrev ?s ?rev)
```


Reverse

```
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
    (reverse ?rest ?rest-rev)
    (append ?rest-rev (?first) ?rev))
logic> (fact (accrev (?first . ?rest) ?acc ?rev)
    (accrev ?rest (?first . ?acc) ?rev))
logic> (fact (accrev () ?acc ?acc))
logic> (fact (accrev ?s ?rev)
    (accrev ?s () ?rev))
```


Reverse

(demo)

```
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
    (reverse ?rest ?rest-rev)
    (append ?rest-rev (?first) ?rev))
logic> (fact (accrev (?first . ?rest) ?acc ?rev)
    (accrev ?rest (?first . ?acc) ?rev))
logic> (fact (accrev () ?acc ?acc))
logic> (fact (accrev ?s ?rev)
    (accrev ?s () ?rev))
```

Break!

Arithmetic

Number Representation

Number Representation

- Logic does not have numbers, but does have Scheme lists

Number Representation

- Logic does not have numbers, but does have Scheme lists
- Let's create our own number representation!

Number Representation

- Logic does not have numbers, but does have Scheme lists
- Let's create our own number representation!
- We'll limit ourselves to non-negative integers

Number Representation

- Logic does not have numbers, but does have Scheme lists
- Let's create our own number representation!
- We'll limit ourselves to non-negative integers
- We can represent the numbers

Number Representation

- Logic does not have numbers, but does have Scheme lists
- Let's create our own number representation!
- We'll limit ourselves to non-negative integers
- We can represent the numbers
- 0, 1, 2, 3, ... as

Number Representation

- Logic does not have numbers, but does have Scheme lists
- Let's create our own number representation!
- We'll limit ourselves to non-negative integers
- We can represent the numbers
- 0, 1, 2, 3, ... as
- 0, (+ 10$),(+1(+10)),(+1(+1(+10))), \ldots$

Number Representation

- Logic does not have numbers, but does have Scheme lists
- Let's create our own number representation!
- We'll limit ourselves to non-negative integers
- We can represent the numbers
- 0, 1, 2, 3, ... as
- 0, (+ 10), (+ $1(+10)),(+1(+1(+10))), \ldots$
- This is still a symbolic representation! Logic doesn't know that these are Scheme expressions that would evaluate to that number

Addition

Addition

- Mathematical facts:

Addition

- Mathematical facts:
- $0+\mathrm{n}=\mathrm{n}$

Addition

- Mathematical facts:
- $0+\mathrm{n}=\mathrm{n}$
- In order for $(x+1)+y=(z+1)$ to be true, $x+y=z$

Addition

- Mathematical facts:
- $0+\mathrm{n}=\mathrm{n}$
- In order for $(x+1)+y=(z+1)$ to be true, $x+y=z$
logic> (fact (+ 0 ?n ?n))

Addition

- Mathematical facts:
- $0+\mathrm{n}=\mathrm{n}$
- In order for $(x+1)+y=(z+1)$ to be true, $x+y=z$

```
logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
```


Addition

- Mathematical facts:
- $0+\mathrm{n}=\mathrm{n}$
- In order for $(x+1)+y=(z+1)$ to be true, $x+y=z$

```
logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
    (+ ?x ?y ?z))
```


Addition

- Mathematical facts:
- $0+\mathrm{n}=\mathrm{n}$
- In order for $(x+1)+y=(z+1)$ to be true, $x+y=z$

$$
\begin{aligned}
\operatorname{logic>}(\text { fact } & (+0 \text { ?n ?n)) } \\
\operatorname{logic>}(f a c t & (+(+1 \text { ?x) ?y (+ } 1 \text { ?z)) }) \\
& (+ \text { ?x ?y ?z)) }
\end{aligned}
$$

Addition

(demo)

- Mathematical facts:
- $0+\mathrm{n}=\mathrm{n}$
- In order for $(x+1)+y=(z+1)$ to be true, $x+y=z$

```
logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
    (+ ?x ?y ?z))
logic> (query (+
```


Addition

- Mathematical facts:
- $0+\mathrm{n}=\mathrm{n}$
- In order for $(x+1)+y=(z+1)$ to be true, $x+y=z$

$$
\begin{aligned}
& \text { logic> (fact (+ } 0 \text { ?n ?n)) } \\
& \text { logic> (fact (+ (+ } 1 \text { ?x) ?y (+ } 1 \text { ?z)) } \\
& \text { (+ ?x ?y ?z)) } \\
& \text { logic> (query (+ } \\
& (+1(+1(+10)))
\end{aligned}
$$

Addition

- Mathematical facts:
- $0+\mathrm{n}=\mathrm{n}$
- In order for $(x+1)+y=(z+1)$ to be true, $x+y=z$

$$
\begin{aligned}
& \text { logic> (fact (+ } 0 \text { ?n ?n)) } \\
& \text { logic> (fact (+ (+ } 1 \text { ?x) ?y (+ } 1 \text { ?z)) } \\
& \text { (+ ?x ?y ?z)) } \\
& \text { logic> (query (+ } \\
& (+1(+1(+10))) \\
& (+1(+10))
\end{aligned}
$$

Addition

- Mathematical facts:
- $0+\mathrm{n}=\mathrm{n}$
- In order for $(x+1)+y=(z+1)$ to be true, $x+y=z$

$$
\begin{aligned}
& \text { logic> (fact (+ } 0 \text { ?n ?n)) } \\
& \text { logic> (fact (+ (+ } 1 \text { ?x) ?y (+ } 1 \text { ?z)) } \\
& \text { (+ ?x ?y ?z)) } \\
& \text { logic> (query (+ } \\
& (+1(+1(+10))) \\
& (+1(+10)) \\
& \text { ?z)) }
\end{aligned}
$$

Multiplication

Multiplication

- Mathematical facts:

Multiplication

- Mathematical facts:
- $0 * \mathrm{n}=0$

Multiplication

- Mathematical facts:
- $0 * \mathrm{n}=0$

$$
\text { logic> (fact (* } 0 \text { ?n 0)) }
$$

Multiplication

- Mathematical facts:
- $0 * \mathrm{n}=0$
- In order for $(x+1) * y=z$ to be true, $x * y+y=z$

$$
\text { logic> (fact (* } 0 \text { ?n 0)) }
$$

Multiplication

- Mathematical facts:
- $0 * \mathrm{n}=0$
- In order for $(x+1) * y=z$ to be true, $x * y+y=z$

```
logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
```


Multiplication

- Mathematical facts:
- $0 * \mathrm{n}=0$
- In order for $(x+1) * y=z$ to be true, $x * y+y=z$

$$
\begin{aligned}
\text { logic> (fact } & (* 0 \text { ?n 0)) } \\
\text { logic> (fact } & (*(+1 \text { ?x) ?y ?z) } \\
& (+ \text { ?xy ?y ?z) }
\end{aligned}
$$

Multiplication

- Mathematical facts:
- $0 * \mathrm{n}=0$
- In order for $(x+1) * y=z$ to be true, $x * y+y=z$

$$
\begin{aligned}
\operatorname{logic>}(\text { fact } & (* 0 \text { ?n 0)) } \\
\text { logic> (fact } & (* \text { (+ } 1 \text { ?x) ?y ?z) } \\
& (+ \text { ?xy ?y ?z) } \\
& (* \text { ?x ?y ?xy)) }
\end{aligned}
$$

Multiplication

- Mathematical facts:
- $0 * \mathrm{n}=0$
- In order for $(x+1) * y=z$ to be true, $x * y+y=z$

$$
\begin{aligned}
\operatorname{logic>}(\text { fact } & (* 0 \text { ?n 0)) } \\
\text { logic> (fact } & (* \text { (+ } 1 \text { ?x) ?y ?z) } \\
& (+ \text { ?xy ?y ?z) } \\
& (* \text { ?x ?y ?xy)) }
\end{aligned}
$$

Multiplication

- Mathematical facts:
- $0 * \mathrm{n}=0$
- In order for $(x+1) * y=z$ to be true, $x * y+y=z$

```
logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
    (+ ?xy ?y ?z)
    (* ?x ?y ?xy))
logic> (query (* (+ 1 (+ 1 (+ 1 0))) ?y
```


Multiplication

- Mathematical facts:
- $0 * \mathrm{n}=0$
- In order for $(x+1) * y=z$ to be true, $x * y+y=z$

```
logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
    (+ ?xy ?y ?z)
    (* ?x ?y ?xy))
logic> (query (* (+ 1 (+ 1 (+ 1 0))) ?y
    (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 0))))))))
```


Subtraction and Division

Subtraction and Division

- Mathematical facts:

Subtraction and Division

- Mathematical facts:
- Subtraction is the inverse of addition

Subtraction and Division

- Mathematical facts:
- Subtraction is the inverse of addition
- In order for $\mathrm{x}-\mathrm{y}=\mathrm{z}, \mathrm{y}+\mathrm{z}=\mathrm{x}$

Subtraction and Division

- Mathematical facts:
- Subtraction is the inverse of addition
- In order for $\mathrm{x}-\mathrm{y}=\mathrm{z}, \mathrm{y}+\mathrm{z}=\mathrm{x}$
logic> (fact (- ?x ?y ?z)

Subtraction and Division

- Mathematical facts:
- Subtraction is the inverse of addition
- In order for $\mathrm{x}-\mathrm{y}=\mathrm{z}, \mathrm{y}+\mathrm{z}=\mathrm{x}$
logic> (fact (- ?x ?y ?z)
(+ ?y ?z ?x))

Subtraction and Division

- Mathematical facts:
- Subtraction is the inverse of addition
- In order for $x-y=z, y+z=x$
- Division is the inverse of multiplication

$$
\begin{aligned}
\text { logic> (fact } & (-\quad \text { ?x ?y ?z) } \\
& (+ \text { ?y ?z ?x)) }
\end{aligned}
$$

Subtraction and Division

- Mathematical facts:
- Subtraction is the inverse of addition
- In order for $\mathrm{x}-\mathrm{y}=\mathrm{z}, \mathrm{y}+\mathrm{z}=\mathrm{x}$
- Division is the inverse of multiplication
- In order for $\mathrm{x} / \mathrm{y}=\mathrm{z}, \mathrm{y} * \mathrm{z}=\mathrm{x}$ (assuming x is divisible by y)

$$
\begin{aligned}
\text { logic> (fact } & (- \text { ?x ?y ?z) } \\
& (+ \text { ?y ?z ?x) })
\end{aligned}
$$

Subtraction and Division

- Mathematical facts:
- Subtraction is the inverse of addition
- In order for $x-y=z, y+z=x$
- Division is the inverse of multiplication
- In order for $x / y=z, y * z=x$ (assuming x is divisible by y)

$$
\begin{aligned}
& \text { logic> (fact }(-\quad \text { ?x ?y ?z) } \\
&(+ \text { ?y ?z ?x)) } \\
& \text { logic> (fact (/ ?x ?y ?z) }
\end{aligned}
$$

Subtraction and Division

- Mathematical facts:
- Subtraction is the inverse of addition
- In order for $x-y=z, y+z=x$
- Division is the inverse of multiplication
- In order for $\mathrm{x} / \mathrm{y}=\mathrm{z}, \mathrm{y} * \mathrm{z}=\mathrm{x}$ (assuming x is divisible by y)

$$
\begin{aligned}
\text { logic> (fact } & (-\quad \text { ?x ?y ?z) } \\
& (+ \text { ?y ?z ?x)) } \\
\text { logic> (fact } & (/ \text { ?x ?y ?z) } \\
& (* \text { ?y ?z ?x)) }
\end{aligned}
$$

Subtraction and Division

- Mathematical facts:
- Subtraction is the inverse of addition
- In order for $x-y=z, y+z=x$
- Division is the inverse of multiplication
- In order for $x / y=z, y * z=x$ (assuming x is divisible by y)

$$
\begin{aligned}
\text { logic> (fact } & (-\quad \text { ?x ?y ?z) } \\
& (+ \text { ?y ?z ?x)) } \\
\text { logic> (fact } & (/ \text { ?x ?y ?z) } \\
& (* \text { ?y ?z ?x)) }
\end{aligned}
$$

Arithmetic

Arithmetic

- We've implemented the four basic arithmetic operations!

Arithmetic

(demo)

- We've implemented the four basic arithmetic operations!

Arithmetic

(demo)

- We've implemented the four basic arithmetic operations!
- We can now ask Logic about all the different ways to compute the number 6

Arithmetic

(demo)

- We've implemented the four basic arithmetic operations!
- We can now ask Logic about all the different ways to compute the number 6

```
logic> (query (?op ?arg1 ?arg2
    (+1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 0))))))))
```


Summary

Summary

- Some problems can be solved more easily or concisely with declarative programming than imperative programming

Summary

- Some problems can be solved more easily or concisely with declarative programming than imperative programming
- However, just because the computer is the one solving the problem doesn't mean that we can write any declarative program and it will "just work"

Summary

- Some problems can be solved more easily or concisely with declarative programming than imperative programming
- However, just because the computer is the one solving the problem doesn't mean that we can write any declarative program and it will "just work"
- As declarative programmers, we (eventually) should understand how the underlying problem solver works

Summary

- Some problems can be solved more easily or concisely with declarative programming than imperative programming
- However, just because the computer is the one solving the problem doesn't mean that we can write any declarative program and it will "just work"
- As declarative programmers, we (eventually) should understand how the underlying problem solver works
- This semester, just focus on writing declarative programs; no need to worry about the underlying solver yet!

