
Marvin Zhang
08/03/2016

Lecture 25: Coroutines

Announcements

http://cs61a.org/

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Paradigms), the goals are:

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Paradigms), the goals are:
• To study examples of paradigms

that are very different from what
we have seen so far

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Paradigms), the goals are:
• To study examples of paradigms

that are very different from what
we have seen so far

• To expand our definition of what
counts as programming

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Event-Driven Programming

Event-Driven Programming

• Almost all programs we have seen so far involve the
program running in isolation until completion

Event-Driven Programming

• Almost all programs we have seen so far involve the
program running in isolation until completion

• But many practical applications involve communication
between different programs or with a user

Event-Driven Programming

• Almost all programs we have seen so far involve the
program running in isolation until completion

• But many practical applications involve communication
between different programs or with a user
• For example, many web applications have to wait for

user input, such as mouse clicks or text input

Event-Driven Programming

• Almost all programs we have seen so far involve the
program running in isolation until completion

• But many practical applications involve communication
between different programs or with a user
• For example, many web applications have to wait for

user input, such as mouse clicks or text input
• We have seen one example of this: interactive

interpreters wait for the user to type in code before
it can execute that code and produce a result

Event-Driven Programming

• Almost all programs we have seen so far involve the
program running in isolation until completion

• But many practical applications involve communication
between different programs or with a user
• For example, many web applications have to wait for

user input, such as mouse clicks or text input
• We have seen one example of this: interactive

interpreters wait for the user to type in code before
it can execute that code and produce a result

• This style of programming is called event-driven, because
different events, such as user input, trigger different
parts of our program to execute

Revisiting lazy evaluation

Generators and Generator Functions

Generator Functions

Generator Functions

• A generator function is a function that yields values
instead of returning them

Generator Functions

• A generator function is a function that yields values
instead of returning them

• A normal function returns once, a generator function can
yield multiple times

Generator Functions

• A generator function is a function that yields values
instead of returning them

• A normal function returns once, a generator function can
yield multiple times

• When a generator function is called, it returns a
generator that iterates over yield statements

Generator Functions

• A generator function is a function that yields values
instead of returning them

• A normal function returns once, a generator function can
yield multiple times

• When a generator function is called, it returns a
generator that iterates over yield statements

def range_gen(start, end):
 while start < end:
 yield start
 start += 1

Generator Functions

• A generator function is a function that yields values
instead of returning them

• A normal function returns once, a generator function can
yield multiple times

• When a generator function is called, it returns a
generator that iterates over yield statements

def range_gen(start, end):
 while start < end:
 yield start
 start += 1

>>> for i in range_gen(0, 5):

Generator Functions

• A generator function is a function that yields values
instead of returning them

• A normal function returns once, a generator function can
yield multiple times

• When a generator function is called, it returns a
generator that iterates over yield statements

def range_gen(start, end):
 while start < end:
 yield start
 start += 1

>>> for i in range_gen(0, 5):
... print(i)
...

Generator Functions

• A generator function is a function that yields values
instead of returning them

• A normal function returns once, a generator function can
yield multiple times

• When a generator function is called, it returns a
generator that iterates over yield statements

def range_gen(start, end):
 while start < end:
 yield start
 start += 1

>>> for i in range_gen(0, 5):
... print(i)
...
0

Generator Functions

• A generator function is a function that yields values
instead of returning them

• A normal function returns once, a generator function can
yield multiple times

• When a generator function is called, it returns a
generator that iterates over yield statements

def range_gen(start, end):
 while start < end:
 yield start
 start += 1

>>> for i in range_gen(0, 5):
... print(i)
...
0
1

Generator Functions

• A generator function is a function that yields values
instead of returning them

• A normal function returns once, a generator function can
yield multiple times

• When a generator function is called, it returns a
generator that iterates over yield statements

def range_gen(start, end):
 while start < end:
 yield start
 start += 1

>>> for i in range_gen(0, 5):
... print(i)
...
0
1
2

Generator Functions

• A generator function is a function that yields values
instead of returning them

• A normal function returns once, a generator function can
yield multiple times

• When a generator function is called, it returns a
generator that iterates over yield statements

def range_gen(start, end):
 while start < end:
 yield start
 start += 1

>>> for i in range_gen(0, 5):
... print(i)
...
0
1
2
3

Generator Functions

• A generator function is a function that yields values
instead of returning them

• A normal function returns once, a generator function can
yield multiple times

• When a generator function is called, it returns a
generator that iterates over yield statements

def range_gen(start, end):
 while start < end:
 yield start
 start += 1

>>> for i in range_gen(0, 5):
... print(i)
...
0
1
2
3
4

Generators

Generators

• A generator is an iterator, created by a generator function

Generators

• A generator is an iterator, created by a generator function

• Generators act as implicit, or lazy, sequences

Generators

• A generator is an iterator, created by a generator function

• Generators act as implicit, or lazy, sequences

• Values are not computed when the sequence is created, but
when they are asked for

Generators

• A generator is an iterator, created by a generator function

• Generators act as implicit, or lazy, sequences

• Values are not computed when the sequence is created, but
when they are asked for

• This is the same as built-in Python range objects, Python
iterators, and Scheme streams

Generators

• A generator is an iterator, created by a generator function

• Generators act as implicit, or lazy, sequences

• Values are not computed when the sequence is created, but
when they are asked for

• This is the same as built-in Python range objects, Python
iterators, and Scheme streams

• We can use implicit sequences to create infinite sequences!

Generators

• A generator is an iterator, created by a generator function

• Generators act as implicit, or lazy, sequences

• Values are not computed when the sequence is created, but
when they are asked for

• This is the same as built-in Python range objects, Python
iterators, and Scheme streams

• We can use implicit sequences to create infinite sequences!

(demo)

Generators

• A generator is an iterator, created by a generator function

• Generators act as implicit, or lazy, sequences

• Values are not computed when the sequence is created, but
when they are asked for

• This is the same as built-in Python range objects, Python
iterators, and Scheme streams

• We can use implicit sequences to create infinite sequences!

def naturals():
 curr = 0
 while True:
 yield curr
 curr += 1

>>> n = naturals()
>>> n
<generator object naturals at ...>
>>> next(n)
0
>>> next(n)
1

(demo)

Generators vs Iterators

Generators vs Iterators

• Generator functions are often simpler and more intuitive to
write than iterator classes, because:

Generators vs Iterators

• Generator functions are often simpler and more intuitive to
write than iterator classes, because:

• We only have to write a function instead of a class

Generators vs Iterators

• Generator functions are often simpler and more intuitive to
write than iterator classes, because:

• We only have to write a function instead of a class

• Yielding pauses execution of the function and automatically
saves state for resuming, as opposed to returning

Generators vs Iterators

• Generator functions are often simpler and more intuitive to
write than iterator classes, because:

• We only have to write a function instead of a class

• Yielding pauses execution of the function and automatically
saves state for resuming, as opposed to returning

• Recall the iterable interface from lab: __iter__ and __next__

Generators vs Iterators

• Generator functions are often simpler and more intuitive to
write than iterator classes, because:

• We only have to write a function instead of a class

• Yielding pauses execution of the function and automatically
saves state for resuming, as opposed to returning

• Recall the iterable interface from lab: __iter__ and __next__

• __iter__ returns an iterator, which has a __next__ method

Generators vs Iterators

• Generator functions are often simpler and more intuitive to
write than iterator classes, because:

• We only have to write a function instead of a class

• Yielding pauses execution of the function and automatically
saves state for resuming, as opposed to returning

• Recall the iterable interface from lab: __iter__ and __next__

• __iter__ returns an iterator, which has a __next__ method

• __next__ returns the next element in our sequence

Generators vs Iterators

• Generator functions are often simpler and more intuitive to
write than iterator classes, because:

• We only have to write a function instead of a class

• Yielding pauses execution of the function and automatically
saves state for resuming, as opposed to returning

• Recall the iterable interface from lab: __iter__ and __next__

• __iter__ returns an iterator, which has a __next__ method

• __next__ returns the next element in our sequence

• A generator function returns a generator, which is an
iterator, and the generator returns the next element by
calling __next__ on it

Generators vs Iterators

• Generator functions are often simpler and more intuitive to
write than iterator classes, because:

• We only have to write a function instead of a class

• Yielding pauses execution of the function and automatically
saves state for resuming, as opposed to returning

• Recall the iterable interface from lab: __iter__ and __next__

• __iter__ returns an iterator, which has a __next__ method

• __next__ returns the next element in our sequence

• A generator function returns a generator, which is an
iterator, and the generator returns the next element by
calling __next__ on it

• So, what if we just make our __iter__ method a generator
function? This satisfies all our requirements!

Generators vs Iterators

• Generator functions are often simpler and more intuitive to
write than iterator classes, because:

• We only have to write a function instead of a class

• Yielding pauses execution of the function and automatically
saves state for resuming, as opposed to returning

• Recall the iterable interface from lab: __iter__ and __next__

• __iter__ returns an iterator, which has a __next__ method

• __next__ returns the next element in our sequence

• A generator function returns a generator, which is an
iterator, and the generator returns the next element by
calling __next__ on it

• So, what if we just make our __iter__ method a generator
function? This satisfies all our requirements!

(demo)

Generalizing generators

Coroutines

Coroutines

Coroutines

• Generator functions can also consume values using the yield
expression (different from the yield statement!)

Coroutines

• Generator functions can also consume values using the yield
expression (different from the yield statement!)

• Generators that both produce and consume values are called
coroutines, though they are still generator objects

Coroutines

• Generator functions can also consume values using the yield
expression (different from the yield statement!)

• Generators that both produce and consume values are called
coroutines, though they are still generator objects

• We can control coroutines by using the send and close methods

Coroutines

• Generator functions can also consume values using the yield
expression (different from the yield statement!)

• Generators that both produce and consume values are called
coroutines, though they are still generator objects

• We can control coroutines by using the send and close methods

• send, like __next__, resumes the coroutine, but also passes
a value to it

Coroutines

• Generator functions can also consume values using the yield
expression (different from the yield statement!)

• Generators that both produce and consume values are called
coroutines, though they are still generator objects

• We can control coroutines by using the send and close methods

• send, like __next__, resumes the coroutine, but also passes
a value to it

• Calling __next__ is equivalent to calling send with None

Coroutines

• Generator functions can also consume values using the yield
expression (different from the yield statement!)

• Generators that both produce and consume values are called
coroutines, though they are still generator objects

• We can control coroutines by using the send and close methods

• send, like __next__, resumes the coroutine, but also passes
a value to it

• Calling __next__ is equivalent to calling send with None

• close stops the coroutine and raises a GeneratorExit
exception within the coroutine

Coroutines (demo)

• Generator functions can also consume values using the yield
expression (different from the yield statement!)

• Generators that both produce and consume values are called
coroutines, though they are still generator objects

• We can control coroutines by using the send and close methods

• send, like __next__, resumes the coroutine, but also passes
a value to it

• Calling __next__ is equivalent to calling send with None

• close stops the coroutine and raises a GeneratorExit
exception within the coroutine

Sequence Processing

Sequence Processing

• Implicit sequences are extremely useful in programming
applications that deal with continuous streams of data, e.g.,
news feeds, sensor measurements, or mathematical sequences

Sequence Processing

• Implicit sequences are extremely useful in programming
applications that deal with continuous streams of data, e.g.,
news feeds, sensor measurements, or mathematical sequences

• When working with data streams, a helpful and efficient
technique is to set up a pipeline for sequence processing

Sequence Processing

• Implicit sequences are extremely useful in programming
applications that deal with continuous streams of data, e.g.,
news feeds, sensor measurements, or mathematical sequences

• When working with data streams, a helpful and efficient
technique is to set up a pipeline for sequence processing

• One way to set up a pipeline is to have each stage of the
pipeline be a coroutine!

Sequence Processing

• Implicit sequences are extremely useful in programming
applications that deal with continuous streams of data, e.g.,
news feeds, sensor measurements, or mathematical sequences

• When working with data streams, a helpful and efficient
technique is to set up a pipeline for sequence processing

• One way to set up a pipeline is to have each stage of the
pipeline be a coroutine!

• Functions at the beginning of the pipeline, that only send
values, are called producers

Sequence Processing

• Implicit sequences are extremely useful in programming
applications that deal with continuous streams of data, e.g.,
news feeds, sensor measurements, or mathematical sequences

• When working with data streams, a helpful and efficient
technique is to set up a pipeline for sequence processing

• One way to set up a pipeline is to have each stage of the
pipeline be a coroutine!

• Functions at the beginning of the pipeline, that only send
values, are called producers

• Coroutines in the middle, that both send and receive values,
are called filters

Sequence Processing

• Implicit sequences are extremely useful in programming
applications that deal with continuous streams of data, e.g.,
news feeds, sensor measurements, or mathematical sequences

• When working with data streams, a helpful and efficient
technique is to set up a pipeline for sequence processing

• One way to set up a pipeline is to have each stage of the
pipeline be a coroutine!

• Functions at the beginning of the pipeline, that only send
values, are called producers

• Coroutines in the middle, that both send and receive values,
are called filters

• Coroutines at the end of the pipeline, that only receive
values, are called consumers

Sequence Processing

• Implicit sequences are extremely useful in programming
applications that deal with continuous streams of data, e.g.,
news feeds, sensor measurements, or mathematical sequences

• When working with data streams, a helpful and efficient
technique is to set up a pipeline for sequence processing

• One way to set up a pipeline is to have each stage of the
pipeline be a coroutine!

• Functions at the beginning of the pipeline, that only send
values, are called producers

• Coroutines in the middle, that both send and receive values,
are called filters

• Coroutines at the end of the pipeline, that only receive
values, are called consumers

• The data coming through the stream is sent through this
pipeline to produce the final result

Sequence Processing

• Implicit sequences are extremely useful in programming
applications that deal with continuous streams of data, e.g.,
news feeds, sensor measurements, or mathematical sequences

• When working with data streams, a helpful and efficient
technique is to set up a pipeline for sequence processing

• One way to set up a pipeline is to have each stage of the
pipeline be a coroutine!

• Functions at the beginning of the pipeline, that only send
values, are called producers

• Coroutines in the middle, that both send and receive values,
are called filters

• Coroutines at the end of the pipeline, that only receive
values, are called consumers

• The data coming through the stream is sent through this
pipeline to produce the final result

(demo)

Sequence Processing

Sequence Processing

• Setting up a pipeline using coroutines allows us to easily
change how we process the data by inserting, removing, and
modifying different pieces of our program

Sequence Processing

• Setting up a pipeline using coroutines allows us to easily
change how we process the data by inserting, removing, and
modifying different pieces of our program

user input

producer

Sequence Processing

• Setting up a pipeline using coroutines allows us to easily
change how we process the data by inserting, removing, and
modifying different pieces of our program

capitalize

filteruser input

producer

Sequence Processing

• Setting up a pipeline using coroutines allows us to easily
change how we process the data by inserting, removing, and
modifying different pieces of our program

capitalize

filter
match

‘MARVIN’

filter

match
‘BRIAN’

filter

user input

producer

Sequence Processing

• Setting up a pipeline using coroutines allows us to easily
change how we process the data by inserting, removing, and
modifying different pieces of our program

capitalize

filter
match

‘MARVIN’

filter

match
‘BRIAN’

filter

user input

producer

print

consumer

Sequence Processing

• Setting up a pipeline using coroutines allows us to easily
change how we process the data by inserting, removing, and
modifying different pieces of our program

capitalize

filter
match

‘MARVIN’

filter

match
‘BRIAN’

filter print

consumer

Sequence Processing

• Setting up a pipeline using coroutines allows us to easily
change how we process the data by inserting, removing, and
modifying different pieces of our program

capitalize

filter
match

‘MARVIN’

filter

match
‘BRIAN’

filter print

consumer

input from
a web form

producer

Sequence Processing

• Setting up a pipeline using coroutines allows us to easily
change how we process the data by inserting, removing, and
modifying different pieces of our program

capitalize

filter
match

‘MARVIN’

filter

match
‘BRIAN’

filter

require
Marvin’s
approval

filter

print

consumer

input from
a web form

producer

Sequence Processing

• Setting up a pipeline using coroutines allows us to easily
change how we process the data by inserting, removing, and
modifying different pieces of our program

capitalize

filter
match

‘MARVIN’

filter

match
‘BRIAN’

filter
reject if
>100 chars

filter

require
Marvin’s
approval

filter

print

consumer

input from
a web form

producer

Sequence Processing

• Setting up a pipeline using coroutines allows us to easily
change how we process the data by inserting, removing, and
modifying different pieces of our program

capitalize

filter
match

‘MARVIN’

filter

match
‘BRIAN’

filter
reject if
>100 chars

filter

require
Marvin’s
approval

filter

print

consumer

input from
a web form

producer

hidden

Sequence Processing

• Setting up a pipeline using coroutines allows us to easily
change how we process the data by inserting, removing, and
modifying different pieces of our program

(demo)

capitalize

filter
match

‘MARVIN’

filter

match
‘BRIAN’

filter
reject if
>100 chars

filter

require
Marvin’s
approval

filter

print

consumer

input from
a web form

producer

hidden

With and without coroutines

Event-Driven Programming

Event-Driven Programming

Event-Driven Programming

• The paradigm of event-driven programming allows different
events, such as user input, to trigger different parts of
our program to execute

Event-Driven Programming

• The paradigm of event-driven programming allows different
events, such as user input, to trigger different parts of
our program to execute

• Lazy evaluation, such as implicit sequences, is similar
to this paradigm in that the “event” of asking for an
element from the sequence triggers the computation

Event-Driven Programming

• The paradigm of event-driven programming allows different
events, such as user input, to trigger different parts of
our program to execute

• Lazy evaluation, such as implicit sequences, is similar
to this paradigm in that the “event” of asking for an
element from the sequence triggers the computation
• However, this is not what is usually meant by “event”

Event-Driven Programming

• The paradigm of event-driven programming allows different
events, such as user input, to trigger different parts of
our program to execute

• Lazy evaluation, such as implicit sequences, is similar
to this paradigm in that the “event” of asking for an
element from the sequence triggers the computation
• However, this is not what is usually meant by “event”

• Processing continuous data streams is an example of this
paradigm, where incoming data is the event

Event-Driven Programming

• The paradigm of event-driven programming allows different
events, such as user input, to trigger different parts of
our program to execute

• Lazy evaluation, such as implicit sequences, is similar
to this paradigm in that the “event” of asking for an
element from the sequence triggers the computation
• However, this is not what is usually meant by “event”

• Processing continuous data streams is an example of this
paradigm, where incoming data is the event

• Interactive interpreters is another example, where user
input is the event

Event-Driven Programming

• The paradigm of event-driven programming allows different
events, such as user input, to trigger different parts of
our program to execute

• Lazy evaluation, such as implicit sequences, is similar
to this paradigm in that the “event” of asking for an
element from the sequence triggers the computation
• However, this is not what is usually meant by “event”

• Processing continuous data streams is an example of this
paradigm, where incoming data is the event

• Interactive interpreters is another example, where user
input is the event

• In event-driven programming, an event loop waits for
events, and handles them by dispatching them to a
callback function

Interactive Interpreters

Interactive Interpreters

• The read-eval-print loop is an example of an event loop

Interactive Interpreters

• The read-eval-print loop is an example of an event loop

user input

producer

Interactive Interpreters

• The read-eval-print loop is an example of an event loop

user input

producer

lexical
analysis

filter

syntactic
analysis

filter

Interactive Interpreters

• The read-eval-print loop is an example of an event loop

user input

producer

lexical
analysis

filter

syntactic
analysis

filter

evaluate

filter

Interactive Interpreters

• The read-eval-print loop is an example of an event loop

user input

producer

lexical
analysis

filter

syntactic
analysis

filter

evaluate

filter

print

consumer

Interactive Interpreters

• The read-eval-print loop is an example of an event loop

• So, we can implement it using coroutines!

user input

producer

lexical
analysis

filter

syntactic
analysis

filter

evaluate

filter

print

consumer

Interactive Interpreters

• The read-eval-print loop is an example of an event loop

• So, we can implement it using coroutines!
• This doesn’t provide an advantage in this case, because

the REPL is already fairly simple and elegant

user input

producer

lexical
analysis

filter

syntactic
analysis

filter

evaluate

filter

print

consumer

Interactive Interpreters

• The read-eval-print loop is an example of an event loop

• So, we can implement it using coroutines!
• This doesn’t provide an advantage in this case, because

the REPL is already fairly simple and elegant
• But it is still an interesting exercise

user input

producer

lexical
analysis

filter

syntactic
analysis

filter

evaluate

filter

print

consumer

Interactive Interpreters

• The read-eval-print loop is an example of an event loop

• So, we can implement it using coroutines!
• This doesn’t provide an advantage in this case, because

the REPL is already fairly simple and elegant
• But it is still an interesting exercise

• Let’s take a look at the Calculator interpreter

user input

producer

lexical
analysis

filter

syntactic
analysis

filter

evaluate

filter

print

consumer

Interactive Interpreters

• The read-eval-print loop is an example of an event loop

• So, we can implement it using coroutines!
• This doesn’t provide an advantage in this case, because

the REPL is already fairly simple and elegant
• But it is still an interesting exercise

• Let’s take a look at the Calculator interpreter

(demo)

user input

producer

lexical
analysis

filter

syntactic
analysis

filter

evaluate

filter

print

consumer

Summary

Summary

• Coroutines naturally enforce modularity in our code,
i.e., splitting complex functionality up into smaller
pieces that are easier to write, maintain, and understand

Summary

• Coroutines naturally enforce modularity in our code,
i.e., splitting complex functionality up into smaller
pieces that are easier to write, maintain, and understand
• Modularity also allows us to easily change our program,

simply by swapping in and out different pieces

Summary

• Coroutines naturally enforce modularity in our code,
i.e., splitting complex functionality up into smaller
pieces that are easier to write, maintain, and understand
• Modularity also allows us to easily change our program,

simply by swapping in and out different pieces
• Coroutines are especially useful in building modular

pipelines, where data is processed in stages

Summary

• Coroutines naturally enforce modularity in our code,
i.e., splitting complex functionality up into smaller
pieces that are easier to write, maintain, and understand
• Modularity also allows us to easily change our program,

simply by swapping in and out different pieces
• Coroutines are especially useful in building modular

pipelines, where data is processed in stages
• Both generators and coroutines maintain their own state,

and this is highly useful for particular applications

Summary

• Coroutines naturally enforce modularity in our code,
i.e., splitting complex functionality up into smaller
pieces that are easier to write, maintain, and understand
• Modularity also allows us to easily change our program,

simply by swapping in and out different pieces
• Coroutines are especially useful in building modular

pipelines, where data is processed in stages
• Both generators and coroutines maintain their own state,

and this is highly useful for particular applications
• Though coroutines by themselves are not a paradigm, they

are useful for the paradigm of event-driven programming

Summary

• Coroutines naturally enforce modularity in our code,
i.e., splitting complex functionality up into smaller
pieces that are easier to write, maintain, and understand
• Modularity also allows us to easily change our program,

simply by swapping in and out different pieces
• Coroutines are especially useful in building modular

pipelines, where data is processed in stages
• Both generators and coroutines maintain their own state,

and this is highly useful for particular applications
• Though coroutines by themselves are not a paradigm, they

are useful for the paradigm of event-driven programming
• However, it is important to understand when using

coroutines may just be unnecessarily complicated

Summary

Summary

• Event-driven programming is a heavily used paradigm in
applications such as user interfaces and web development

Summary

• Event-driven programming is a heavily used paradigm in
applications such as user interfaces and web development

• In event-driven programming, an event loop handles
particular events, such as user input, and uses callback
functions to process these events

Summary

• Event-driven programming is a heavily used paradigm in
applications such as user interfaces and web development

• In event-driven programming, an event loop handles
particular events, such as user input, and uses callback
functions to process these events

• One option for implementing callback functions, which
often works well, is to use coroutines

Summary

• Event-driven programming is a heavily used paradigm in
applications such as user interfaces and web development

• In event-driven programming, an event loop handles
particular events, such as user input, and uses callback
functions to process these events

• One option for implementing callback functions, which
often works well, is to use coroutines
• If the event-driven application has callback

functionality that:

Summary

• Event-driven programming is a heavily used paradigm in
applications such as user interfaces and web development

• In event-driven programming, an event loop handles
particular events, such as user input, and uses callback
functions to process these events

• One option for implementing callback functions, which
often works well, is to use coroutines
• If the event-driven application has callback

functionality that:
• Is complex and easily made modular,

Summary

• Event-driven programming is a heavily used paradigm in
applications such as user interfaces and web development

• In event-driven programming, an event loop handles
particular events, such as user input, and uses callback
functions to process these events

• One option for implementing callback functions, which
often works well, is to use coroutines
• If the event-driven application has callback

functionality that:
• Is complex and easily made modular,
• Naturally fits into a processing pipeline, or

Summary

• Event-driven programming is a heavily used paradigm in
applications such as user interfaces and web development

• In event-driven programming, an event loop handles
particular events, such as user input, and uses callback
functions to process these events

• One option for implementing callback functions, which
often works well, is to use coroutines
• If the event-driven application has callback

functionality that:
• Is complex and easily made modular,
• Naturally fits into a processing pipeline, or
• Involves state that changes over time,

Summary

• Event-driven programming is a heavily used paradigm in
applications such as user interfaces and web development

• In event-driven programming, an event loop handles
particular events, such as user input, and uses callback
functions to process these events

• One option for implementing callback functions, which
often works well, is to use coroutines
• If the event-driven application has callback

functionality that:
• Is complex and easily made modular,
• Naturally fits into a processing pipeline, or
• Involves state that changes over time,

• Then coroutines are probably the way to go

