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Roadmap

• This week (Paradigms), the goals are:
• To study examples of paradigms 

that are very different from what 
we have seen so far

• To expand our definition of what 
counts as programming
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Event-Driven Programming

• Almost all programs we have seen so far involve the 
program running in isolation until completion

• But many practical applications involve communication 
between different programs or with a user
• For example, many web applications have to wait for 

user input, such as mouse clicks or text input
• We have seen one example of this: interactive 

interpreters wait for the user to type in code before 
it can execute that code and produce a result

• This style of programming is called event-driven, because 
different events, such as user input, trigger different 
parts of our program to execute
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Generator Functions

• A generator function is a function that yields values 
instead of returning them

• A normal function returns once, a generator function can 
yield multiple times

• When a generator function is called, it returns a 
generator that iterates over yield statements

def range_gen(start, end):
    while start < end:
        yield start
        start += 1

>>> for i in range_gen(0, 5):
...     print(i)
... 
0
1
2
3
4
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Generators

• A generator is an iterator, created by a generator function

• Generators act as implicit, or lazy, sequences

• Values are not computed when the sequence is created, but 
when they are asked for

• This is the same as built-in Python range objects, Python 
iterators, and Scheme streams

• We can use implicit sequences to create infinite sequences!

def naturals():
    curr = 0
    while True:
        yield curr
        curr += 1

>>> n = naturals()
>>> n
<generator object naturals at ...>
>>> next(n)
0
>>> next(n)
1

(demo)
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• Generator functions can also consume values using the yield 
expression (different from the yield statement!)

• Generators that both produce and consume values are called 
coroutines, though they are still generator objects

• We can control coroutines by using the send and close methods

• send, like __next__, resumes the coroutine, but also passes 
a value to it

• Calling __next__ is equivalent to calling send with None

• close stops the coroutine and raises a GeneratorExit 
exception within the coroutine
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• Setting up a pipeline using coroutines allows us to easily 
change how we process the data by inserting, removing, and 
modifying different pieces of our program

(demo)
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Event-Driven Programming

• The paradigm of event-driven programming allows different 
events, such as user input, to trigger different parts of 
our program to execute

• Lazy evaluation, such as implicit sequences, is similar 
to this paradigm in that the “event” of asking for an 
element from the sequence triggers the computation
• However, this is not what is usually meant by “event”

• Processing continuous data streams is an example of this 
paradigm, where incoming data is the event

• Interactive interpreters is another example, where user 
input is the event

• In event-driven programming, an event loop waits for 
events, and handles them by dispatching them to a 
callback function
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pieces that are easier to write, maintain, and understand
• Modularity also allows us to easily change our program, 

simply by swapping in and out different pieces
• Coroutines are especially useful in building modular 

pipelines, where data is processed in stages
• Both generators and coroutines maintain their own state, 

and this is highly useful for particular applications
• Though coroutines by themselves are not a paradigm, they 

are useful for the paradigm of event-driven programming
• However, it is important to understand when using 

coroutines may just be unnecessarily complicated
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Summary

• Event-driven programming is a heavily used paradigm in 
applications such as user interfaces and web development

• In event-driven programming, an event loop handles 
particular events, such as user input, and uses callback 
functions to process these events

• One option for implementing callback functions, which 
often works well, is to use coroutines
• If the event-driven application has callback 

functionality that:
• Is complex and easily made modular,
• Naturally fits into a processing pipeline, or
• Involves state that changes over time,

• Then coroutines are probably the way to go


