
Brian Hou
August 4, 2016

Lecture 26: Parallelism

Announcements

• Project 4 is due tomorrow (8/5)

• Submit by today for 1 EC point

• Final Review tomorrow (8/5) from 11-12:30pm in 2050 VLSB

• Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
• Ants composition revisions due Saturday (8/6)
• Scheme Recursive Art Contest is open! Submissions due 8/9
• Potluck II on 8/10! 5-8pm (or later) in Wozniak Lounge

• Bring food and board games!

• Homework 10 will be due 8/9

• Homework 11 and 12 will be due 8/10 and 8/12

• Last two of the three extra credit surveys

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Paradigms), the goals are:

• To study examples of paradigms
that are very different from what
we have seen so far

• To expand our definition of what
counts as programming

Big Data

Facebook Lexicon

(discontinued)

Examples of Big Data

• There's a lot of data out there!

• Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)

• 1,000 genomes project: 200 Terabytes

• Google web index: 10+ Petabytes (10,000,000 Gigabytes!!)

• These datasets are too large to fit on a single computer

• Reading 1 Terabyte from disk: 3 hours (100 MB per second)

Examples from Anthony Joseph

Distributed Algorithms

• If data can't be stored on a single machine, then our
programs can't run on a single machine

• Therefore, we need to develop distributed algorithms to
distribute and coordinate work between worker machines

• Machines can communicate, but perform computations in
their own isolated environment

Computers for Big Data

• Typical hardware for big data applications:

• Consumer-grade hard disks and processors

• Independent computers are stored in racks

• Concerns: heat, power, monitoring, networking

• When using many computers, some will fail!

Facebook datacenter (2014)

Distributed Algorithms

• If data can't be stored on a single machine, then our
programs can't run on a single machine

• Therefore, we need to develop distributed algorithms to
distribute and coordinate work between worker machines

• Machines can communicate, but perform computations in
their own isolated environment

• Machines and networks occasionally fail!

• Lost work must be recomputed

• Slow workers should be detected and their task should be
given to a different worker

• This is getting complicated...

Apache Spark

Apache Spark

• Apache Spark is a data processing system that provides a
simple interface for large data

• Developed right here at Berkeley in 2010!

• A Resilient Distributed Dataset (RDD) is a collection of
values or key-value pairs

• Supports common sequence operations: map, filter, reduce

• These operations can be performed on RDDs that are
partitioned across machines

• Idea: Working with distributed data is complicated. Use
abstraction to hide the fact that the data is distributed!

Apache Spark Execution Model

• An RDD is distributed in partitions to worker nodes

• A driver program defines transformations and actions

• Transformations: Create a new RDD from an existing RDD

• Actions: Summarize RDD into one value (e.g. sum, take)

• A cluster manager assigns tasks to individual worker nodes
to carry them out

• Worker nodes perform computation and communicate values to
each other

• Final results are communicated back to the driver program

Othello

Romeo & Juliet
Two households , both alike in dignity ,
In fair Verona , where we lay our scene ,
From ancient grudge break to new mutiny ,
Where civil blood makes civil hands unclean .
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life ;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife .
The fearful passage of their death-mark'd love ,
And the continuance of their parents' rage ,
Which , but their children's end , nought could remove ,
Is now the two hours' traffick of our stage ;
The which if you with patient ears attend ,
What here shall miss , our toil shall strive to mend .

The Last Words of Shakespeare

• A driver program defines transformations and actions

• A cluster manager assigns tasks to individual worker nodes

• Worker nodes perform computation and communicate values to
each other

The Last Words of Shakespeare

• A SparkContext gives access to the cluster manager

• An RDD can be constructed from the lines of a text file

• The sortBy transformation and take action are methods

(demo)

>>> sc
<pyspark.context.SparkContext ...>
>>> shakes = sc.textFile('shakespeare.txt')
>>> shakes.sortBy(lambda line: line, False)
... .take(2)
['you shall...', 'yet, a...']

What Does Apache Spark Provide?

• Fault tolerance: A machine or hard drive might crash

• The cluster manager automatically re-runs failed tasks

• Speed: Some machine might be slow because it's overloaded

• The cluster manager can run multiple copies of a task
and keep the result of the one that finishes first

• Monitoring: Will my job finish before dinner?!?

• The cluster manager provides a web-based interface
describing jobs

• Abstraction!

MapReduce

MapReduce Applications

• An important early distributed processing system was
MapReduce, published by Google in 2004

• Simple structure that happened to capture many common data
processing tasks

• Step 1: Each element in an input collection produces
zero or more key-value pairs (map)

• Step 2: All key-value pairs that share a key are
aggregated together (shuffle)

• Step 3: All the values for a key are processed as a
sequence (reduce)

• Early applications: indexing web pages, computing PageRank

MapReduce Evaluation Model

• Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

• Reduce step: For each intermediate key, apply a reducer
function to accumulate all values associated with that key

• All key-value pairs with the same key are processed
together

Google MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

mapper

MapReduce Evaluation Model

• Reduce step: For each intermediate key, apply a reducer
function to accumulate all values associated with that key

• All key-value pairs with the same key are processed
together

Google MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

mapper

a: 4
a: 1
a: 1

e: 1
...

a: 6
reducer

MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

data.flatMap(fn)

data.reduceByKey(fn)

Call Expression Data fn Input Resultfn Output

Values One value All key-value
pairs returned
by calls to fn

Zero or more
key-value pairs

Key-value
pairs

Two values One key-value
pair for each
unique key

One value

(demo)

Summary

• Some problems are too big for one computer to solve!

• However, distributed programming comes with its own issues

• We can use abstractions (such as Apache Spark) to manage
some of the complexity that is inevitable when running
programs on many machines

