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Project 4 is due tomorrow (8/5)
Submit by today for 1 EC point

Final Review tomorrow (8/5) from 11-12:30pm in 2050 VLSB
Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle

Ants composition revisions due Saturday (8/6)

Scheme Recursive Art Contest is open! Submissions due 8/9

Potluck II on 8/10! 5-8pm (or later) in Wozniak Lounge
Bring food and board games!

Homework 10 will be due 8/9

Homework 11 and 12 will be due 8/10 and 8/12

Last two of the three extra credit surveys
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Roadmap

Introduction
Functions
This week (Paradigms), the goals are:

Data + To study examples of paradigms
- that are very different from what
Mutability] we have seen so far
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Facebook Lexicon

Search Lexicon: - party tonight, hangover | “

Suggestions: xoxo,xoxoxo | eid | skiing,beach | clinton, obama

gparty tonight IT"I hangover

TR T
M

Sep | Oct 2 | Nov 1 | Dec 1 |1an 1 | Feb 1 | Mar 1 | Apr 1
2008

(discontinued)
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Examples of Big Data

- There's a lot of data out there!

- Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)

* 1,000 genomes project: 200 Terabytes

- Google web index: 10+ Petabytes (10,000,000 Gigabytes!!)
- These datasets are too large to fit on a single computer

- Reading 1 Terabyte from disk: 3 hours (100 MB per second)

Examples from Anthony Joseph
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Computers for Big Data

- Typical hardware for big data applications:
- Consumer—grade hard disks and processors
- Independent computers are stored in racks

- Concerns: heat, power, monitoring, networking
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Computers for Big Data

- Typical hardware for big data applications:
- Consumer—grade hard disks and processors
- Independent computers are stored in racks
- Concerns: heat, power, monitoring, networking

- When using many computers, some will fail!
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Distributed Algorithms

« If data can't be stored on a single machine, then our
programs can't run on a single machine

* Therefore, we need to develop distributed algorithms to
distribute and coordinate work between worker machines

- Machines can communicate, but perform computations 1in
their own 1solated environment

- Machines and networks occasionally fail!

* Lost work must be recomputed

- Slow workers should be detected and their task should be
given to a different worker

« This 1s getting complicated...



Apache Spark




Apache Spark




Apache Spark

- Apache Spark 1s a data processing system that provides a
simple interface for large data



Apache Spark

- Apache Spark 1s a data processing system that provides a
simple interface for large data

* Developed right here at Berkeley in 2010!



Apache Spark

- Apache Spark 1s a data processing system that provides a
simple interface for large data

* Developed right here at Berkeley in 2010!

« A Resilient Distributed Dataset (RDD) is a collection of
values or key-value pairs



Apache Spark

- Apache Spark 1s a data processing system that provides a
simple interface for large data

* Developed right here at Berkeley in 2010!

« A Resilient Distributed Dataset (RDD) is a collection of
values or key-value pairs

- Supports common sequence operations: map, filter, reduce



Apache Spark

- Apache Spark 1s a data processing system that provides a
simple interface for large data

* Developed right here at Berkeley in 2010!

« A Resilient Distributed Dataset (RDD) is a collection of
values or key-value pairs

- Supports common sequence operations: map, filter, reduce

- These operations can be performed on RDDs that are
partitioned across machines



Apache Spark

- Apache Spark 1s a data processing system that provides a
simple interface for large data

* Developed right here at Berkeley in 2010!

« A Resilient Distributed Dataset (RDD) is a collection of
values or key-value pairs

- Supports common sequence operations: map, filter, reduce

- These operations can be performed on RDDs that are
partitioned across machines

- Idea: Working with distributed data is complicated. Use
abstraction to hide the fact that the data is distributed!
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Apache Spark Execution Model

« An RDD 1s distributed in partitions to worker nodes

- A driver program defines transformations and actions
- Transformations: Create a new RDD from an existing RDD
- Actions: Summarize RDD into one value (e.g. sum, take)

- A cluster manager assigns tasks to individual worker nodes
to carry them out

- Worker nodes perform computation and communicate values to
each other

 Final results are communicated back to the driver program
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A driver program defines transformations and actions
- A cluster manager assigns tasks to individual worker nodes

* Worker nodes perform computation and communicate values to
each other

Romeo & Juliet

Two households , both alike in dignity ,

In fair Verona , where we lay our scene ,

From ancient grudge break to new mutiny ,

Where civil blood makes civil hands unclean .

From forth the fatal loins of these two foes

A pair of star-cross'd lovers take their life ;

Whose misadventur'd piteous overthrows

Do with their death bury their parents' strife .

The fearful passage of their death-mark'd love ,

And the continuance of their parents' rage ,

Which , but their children's end , nought could remove ,
Is now the two hours' traffick of our stage ;

The which if you with patient ears attend ,

What here shall miss , our toil shall strive to mend .
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A driver program defines transformations and actions
- A cluster manager assigns tasks to individual worker nodes

* Worker nodes perform computation and communicate values to
each other

Othello

Romeo & Juliet

Two households , both alike in dignity ,

In fair Verona , where we lay our scene ,

From ancient grudge break to new mutiny ,

Where civil blood makes civil hands unclean .

From forth the fatal loins of these two foes

A pair of star-cross'd lovers take their life ;

Whose misadventur'd piteous overthrows

Do with their death bury their parents' strife .

The fearful passage of their death-mark'd love ,

And the continuance of their parents' rage ,

Which , but their children's end , nought could remove ,
Is now the two hours' traffick of our stage ;

The which if you with patient ears attend ,

What here shall miss , our toil shall strive to mend .
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A driver program defines transformations and actions

- A cluster manager assigns tasks to individual worker nodes

* Worker nodes perform computation and communicate values to

each other

Driver Program

SparkContext

<

Cluster Manager

4 Othello
r 3 .
Worker Mode 71 Romeo & Juliet
Executor | Cache | | | Two households , both alike in dignity ,
. In fair Verona , where we lay our scene ,
Task Task N From ancient grudge break to new mutiny ,
x Where civil blood makes civil hands unclean
T . From forth the fatal loins of these two foes
i A pair of star-cross'd lovers take their life ;
Worker Node l . Whose misadventur'd piteous overthrows
5 Do with their death bury their parents' strife
Executor | Cache | |+ The fearful passage of their death-mark'd love ,
1 And the continuance of their parents' rage ,
Which , but their children's end , nought could remove ,
Task Task Is now the two hours' traffick of our stage ;
The which if you with patient ears attend ,
What here shall miss , our toil shall strive to mend
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The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager
- An RDD can be constructed from the lines of a text file

- The sortBy transformation and take action are methods

>>> SC

>>> shakes = sc.textFile('shakespeare.txt")
>>> shakes.sortBy(lambda line: line, False)
.take(2)



The Last Words of Shakespeare (demo)

- A SparkContext gives access to the cluster manager
- An RDD can be constructed from the lines of a text file

- The sortBy transformation and take action are methods

>>> SC

>>> shakes = sc.textFile('shakespeare.txt")
>>> shakes.sortBy(lambda line: line, False)
.take(2)
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What Does Apache Spark Provide?

- Fault tolerance: A machine or hard drive might crash
- The cluster manager automatically re-runs failed tasks
- Speed: Some machine might be slow because 1t's overloaded

- The cluster manager can run multiple copies of a task
and keep the result of the one that finishes first

- Monitoring: Will my job finish before dinner?!?

- The cluster manager provides a web-based interface
describing jobs

« Abstraction!
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MapReduce Applications

« An important early distributed processing system was
MapReduce, published by Google 1in 2004

- Simple structure that happened to capture many common data
processing tasks

- Step 1: Each element in an input collection produces
zero or more key-value pairs (map)

- Step 2: All key-value pairs that share a key are
aggregated together (shuffle)

- Step 3: ALl the values for a key are processed as a
sequence (reduce)

- Early applications: 1ndexing web pages, computing PageRank
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MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

- Reduce step: For each intermediate key, apply a reducer
function to accumulate all values associated with that key

- All key-value pairs with the same key are processed

together

Google MapReduce
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- Reduce step: For each intermediate key, apply a reducer
function to accumulate all values associated with that key
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MapReduce Evaluation Model

- Reduce step: For each intermediate key, apply a reducer
function to accumulate all values associated with that key

ALl key-value pairs with the same key are processed
together

Google MapReduce
Is a Big Data framework }
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MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression

data.flatMap(fn)

data.reduceByKey(fn)

Data fn Input

Values One value

Key-value Two values
pairs

fn Output Result

/ero or more All key-value
key-value pairs pairs returned
by calls to fn

One value One key-value
pair for each
unique key



MapReduce on Apache Spark (demo)

Key-value pairs are just two—element Python tuples

Call Expression Data fn Input fn Output Result

data.flatMap(fn) Values One value Zero or more All key-value
key-value pairs pairs returned
by calls to fn

data.reduceByKey(fn) Key-value Two values One value One key-value
pairs pair for each
unique key
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Summary

- Some problems are too big for one computer to solve!
- However, distributed programming comes with 1its own 1ssues

- We can use abstractions (such as Apache Spark) to manage
some of the complexity that is inevitable when running
programs on many machines



