Lecture 26: Parallelism

Brian Hou
August 4, 2016

Announcements

Announcements

Project 4 is due tomorrow (8/5)

Announcements

Project 4 is due tomorrow (8/5)
Submit by today for 1 EC point

Announcements

Project 4 is due tomorrow (8/5)
Submit by today for 1 EC point
Final Review tomorrow (8/5) from 11-12:30pm in 2050 VLSB

Announcements

Project 4 is due tomorrow (8/5)
Submit by today for 1 EC point

Final Review tomorrow (8/5) from 11-12:30pm in 2050 VLSB
Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle

Announcements

Project 4 is due tomorrow (8/5)
Submit by today for 1 EC point

Final Review tomorrow (8/5) from 11-12:30pm in 2050 VLSB
Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle

Ants composition revisions due Saturday (8/6)

Announcements

Project 4 is due tomorrow (8/5)
Submit by today for 1 EC point
Final Review tomorrow (8/5) from 11-12:30pm in 2050 VLSB
Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
Ants composition revisions due Saturday (8/6)

Scheme Recursive Art Contest is open! Submissions due 8/9

Announcements

Project 4 is due tomorrow (8/5)
Submit by today for 1 EC point
Final Review tomorrow (8/5) from 11-12:30pm in 2050 VLSB
Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
Ants composition revisions due Saturday (8/6)
Scheme Recursive Art Contest is open! Submissions due 8/9
Potluck II on 8/10! 5-8pm (or later) in Wozniak Lounge

Announcements

Project 4 is due tomorrow (8/5)
Submit by today for 1 EC point
Final Review tomorrow (8/5) from 11-12:30pm in 2050 VLSB
Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
Ants composition revisions due Saturday (8/6)
Scheme Recursive Art Contest is open! Submissions due 8/9
Potluck II on 8/10! 5-8pm (or later) in Wozniak Lounge

Bring food and board games!

Announcements

Project 4 is due tomorrow (8/5)
Submit by today for 1 EC point
Final Review tomorrow (8/5) from 11-12:30pm in 2050 VLSB
Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
Ants composition revisions due Saturday (8/6)
Scheme Recursive Art Contest is open! Submissions due 8/9

Potluck II on 8/10! 5-8pm (or later) in Wozniak Lounge
Bring food and board games!

Homework 10 will be due 8/9

Announcements

Project 4 is due tomorrow (8/5)
Submit by today for 1 EC point
Final Review tomorrow (8/5) from 11-12:30pm in 2050 VLSB
Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
Ants composition revisions due Saturday (8/6)
Scheme Recursive Art Contest is open! Submissions due 8/9
Potluck II on 8/10! 5-8pm (or later) in Wozniak Lounge
Bring food and board games!

Homework 10 will be due 8/9
Homework 11 and 12 will be due 8/10 and 8/12

Announcements

Project 4 is due tomorrow (8/5)
Submit by today for 1 EC point

Final Review tomorrow (8/5) from 11-12:30pm in 2050 VLSB
Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle

Ants composition revisions due Saturday (8/6)

Scheme Recursive Art Contest is open! Submissions due 8/9

Potluck II on 8/10! 5-8pm (or later) in Wozniak Lounge
Bring food and board games!

Homework 10 will be due 8/9

Homework 11 and 12 will be due 8/10 and 8/12

Last two of the three extra credit surveys

Roadmap

Introductionj

o YSh

Functionsj

Data

[Mutabilityj

-
Objectsj

Y4

Interpretationj

\(

Paradigms]

-

Applicationsj

)

Roadmap

Introduction

Functions
- This week (Paradigms), the goals are:

Data

[Mutability]

>
Objectsj
.

>
Interpretationj

Y4

Paradigms]

~

Applicationsj

)

Roadmap

Introduction
Functions
This week (Paradigms), the goals are:

Data - To study examples of paradigms
- that are very different from what
Mutability] we have seen so far
.
()

Objects]
_
()

Interpretatlon)
N
(" .

Paradlgms]
\
~

Applicationsj
.

Roadmap

Introduction
Functions
This week (Paradigms), the goals are:

Data + To study examples of paradigms
- that are very different from what
Mutability] we have seen so far
> « To expand our definition of what
Objects] counts as programming
-
([

Interpretatlon)
\
(. :

Paradlgms]
\—
~

Applicationsj
.

Big Data

Facebook Lexicon

Search Lexicon: n

Suggestions: x0x0 , XOX0X0 | eid | skiing,beach | clinton, obama

E V]

Facebook Lexicon

Search Lexicon: party tonight, hangover n
Suggestions: x0x0 , XOX0X0 | eid | skiing,beach | clinton, obama
ﬂpartv tonight @ hanaover

Facebook Lexicon

Search Lexicon: - party tonight, hangover | “

Suggestions: xoxo,xoxoxo | eid | skiing,beach | clinton, obama

gparty tonight IT"I hangover

TR T
M

Sep | Oct 2 | Nov 1 | Dec 1 |1an 1 | Feb 1 | Mar 1 | Apr 1
2008

(discontinued)

Examples of Big Data

Examples from Anthony Joseph

Examples of Big Data

- There's a lot of data out there!

Examples from Anthony Joseph

Examples of Big Data

- There's a lot of data out there!

- Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)

Examples from Anthony Joseph

Examples of Big Data

- There's a lot of data out there!
- Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)
* 1,000 genomes project: 200 Terabytes

Examples from Anthony Joseph

Examples of Big Data

- There's a lot of data out there!
- Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)
* 1,000 genomes project: 200 Terabytes
- Google web index: 10+ Petabytes (10,000,000 Gigabytes!!)

Examples from Anthony Joseph

Examples of Big Data

- There's a lot of data out there!
- Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)
* 1,000 genomes project: 200 Terabytes
- Google web index: 10+ Petabytes (10,000,000 Gigabytes!!)

- These datasets are too large to fit on a single computer

Examples from Anthony Joseph

Examples of Big Data

- There's a lot of data out there!

- Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)

* 1,000 genomes project: 200 Terabytes

- Google web index: 10+ Petabytes (10,000,000 Gigabytes!!)
- These datasets are too large to fit on a single computer

- Reading 1 Terabyte from disk: 3 hours (100 MB per second)

Examples from Anthony Joseph

Distributed Algorithms

Distributed Algorithms

« If data can't be stored on a single machine, then our
programs can't run on a single machine

Distributed Algorithms

« If data can't be stored on a single machine, then our
programs can't run on a single machine

* Therefore, we need to develop distributed algorithms to
distribute and coordinate work between worker machines

Distributed Algorithms

« If data can't be stored on a single machine, then our
programs can't run on a single machine

* Therefore, we need to develop distributed algorithms to
distribute and coordinate work between worker machines

- Machines can communicate, but perform computations 1in
their own 1solated environment

Computers for Big Data

Computers for Big Data

- Typical hardware for big data applications:

Computers for Big Data

- Typical hardware for big data applications:

- Consumer—grade hard disks and processors

Computers for Big Data

- Typical hardware for big data applications:
- Consumer—grade hard disks and processors

- Independent computers are stored in racks

Computers for Big Data

- Typical hardware for big data applications:
- Consumer—grade hard disks and processors

- Independent computers are stored in racks

A W;T
i

FIeey:
SALALARAL AL ML)

‘w
-
-
-
-
-
N
-
-
-
-
-
e) ot
-

SRR Y
Ty

2121212188
ERERE e cd ™

AARARRANN
SLRLEIEY
.1-.., A N A
|

Facebook datacenter (2014)

Computers for Big Data

- Typical hardware for big data applications:
- Consumer—grade hard disks and processors
- Independent computers are stored in racks

- Concerns: heat, power, monitoring, networking

|
1)
|

w‘w\
|

o
SRR NIRARY

FIFTYY
STETETETAV ey

|
1)

.
-
.

-
-
-
"
-
-
-
-
-
-"
-

. S RIRINY

A
i

' iy
L
N

EEERERE £E 1

-

RRERE L o ™

TLTTELETRES.
-1-. S o A
£

SARRRRRAL (0 F

Facebook datacenter (2014)

Computers for Big Data

- Typical hardware for big data applications:
- Consumer—grade hard disks and processors
- Independent computers are stored in racks
- Concerns: heat, power, monitoring, networking

- When using many computers, some will fail!

|

i
ﬁ'ﬁgr

1434044

.
-
.

-
-
-
N
-
-
-
-
-
-"
-

Illlllllglllll
-
ST NTRIRTRIRY
L3
ANARANANERERY

‘l_L T en s n ananmnanan

' iy
L
N

21212101818
RRERE L o ™

-

TLTTELETRES.
-1-. S o A
£

SARRRRRAL (0 F

Facebook datacenter (2014)

Distributed Algorithms

Distributed Algorithms

« If data can't be stored on a single machine, then our
programs can't run on a single machine

* Therefore, we need to develop distributed algorithms to
distribute and coordinate work between worker machines

- Machines can communicate, but perform computations 1in
their own 1solated environment

Distributed Algorithms

If data can't be stored on a single machine, then our
programs can't run on a single machine

Therefore, we need to develop distributed algorithms to
distribute and coordinate work between worker machines

Machines can communicate, but perform computations 1in
their own 1solated environment

Machines and networks occasionally fail!

Distributed Algorithms

If data can't be stored on a single machine, then our
programs can't run on a single machine

Therefore, we need to develop distributed algorithms to
distribute and coordinate work between worker machines

Machines can communicate, but perform computations 1in
their own 1solated environment

Machines and networks occasionally fail!

* Lost work must be recomputed

Distributed Algorithms

« If data can't be stored on a single machine, then our
programs can't run on a single machine

* Therefore, we need to develop distributed algorithms to
distribute and coordinate work between worker machines

- Machines can communicate, but perform computations 1in
their own 1solated environment

- Machines and networks occasionally fail!

* Lost work must be recomputed

- Slow workers should be detected and their task should be
given to a different worker

Distributed Algorithms

« If data can't be stored on a single machine, then our
programs can't run on a single machine

* Therefore, we need to develop distributed algorithms to
distribute and coordinate work between worker machines

- Machines can communicate, but perform computations 1in
their own 1solated environment

- Machines and networks occasionally fail!

* Lost work must be recomputed

- Slow workers should be detected and their task should be
given to a different worker

« This 1s getting complicated...

Apache Spark

Apache Spark

Apache Spark

- Apache Spark 1s a data processing system that provides a
simple interface for large data

Apache Spark

- Apache Spark 1s a data processing system that provides a
simple interface for large data

* Developed right here at Berkeley in 2010!

Apache Spark

- Apache Spark 1s a data processing system that provides a
simple interface for large data

* Developed right here at Berkeley in 2010!

« A Resilient Distributed Dataset (RDD) is a collection of
values or key-value pairs

Apache Spark

- Apache Spark 1s a data processing system that provides a
simple interface for large data

* Developed right here at Berkeley in 2010!

« A Resilient Distributed Dataset (RDD) is a collection of
values or key-value pairs

- Supports common sequence operations: map, filter, reduce

Apache Spark

- Apache Spark 1s a data processing system that provides a
simple interface for large data

* Developed right here at Berkeley in 2010!

« A Resilient Distributed Dataset (RDD) is a collection of
values or key-value pairs

- Supports common sequence operations: map, filter, reduce

- These operations can be performed on RDDs that are
partitioned across machines

Apache Spark

- Apache Spark 1s a data processing system that provides a
simple interface for large data

* Developed right here at Berkeley in 2010!

« A Resilient Distributed Dataset (RDD) is a collection of
values or key-value pairs

- Supports common sequence operations: map, filter, reduce

- These operations can be performed on RDDs that are
partitioned across machines

- Idea: Working with distributed data is complicated. Use
abstraction to hide the fact that the data is distributed!

Apache Spark Execution Model

Apache Spark Execution Model

« An RDD 1s distributed in partitions to worker nodes

Apache Spark Execution Model

« An RDD 1s distributed in partitions to worker nodes

- A driver program defines transformations and actions

Apache Spark Execution Model

« An RDD 1s distributed in partitions to worker nodes
- A driver program defines transformations and actions

 Transformations: Create a new RDD from an existing RDD

Apache Spark Execution Model

« An RDD 1s distributed in partitions to worker nodes
- A driver program defines transformations and actions
- Transformations: Create a new RDD from an existing RDD

- Actions: Summarize RDD into one value (e.g. sum, take)

Apache Spark Execution Model

« An RDD 1s distributed in partitions to worker nodes

- A driver program defines transformations and actions
- Transformations: Create a new RDD from an existing RDD
- Actions: Summarize RDD into one value (e.g. sum, take)

- A cluster manager assigns tasks to individual worker nodes
to carry them out

Apache Spark Execution Model

« An RDD 1s distributed in partitions to worker nodes

- A driver program defines transformations and actions
- Transformations: Create a new RDD from an existing RDD
- Actions: Summarize RDD into one value (e.g. sum, take)

- A cluster manager assigns tasks to individual worker nodes
to carry them out

- Worker nodes perform computation and communicate values to
each other

Apache Spark Execution Model

« An RDD 1s distributed in partitions to worker nodes

- A driver program defines transformations and actions
- Transformations: Create a new RDD from an existing RDD
- Actions: Summarize RDD into one value (e.g. sum, take)

- A cluster manager assigns tasks to individual worker nodes
to carry them out

- Worker nodes perform computation and communicate values to
each other

 Final results are communicated back to the driver program

The Last Words of Shakespeare

The Last Words of Shakespeare

A driver program defines transformations and actions
- A cluster manager assigns tasks to individual worker nodes

* Worker nodes perform computation and communicate values to
each other

The Last Words of Shakespeare

A driver program defines transformations and actions
- A cluster manager assigns tasks to individual worker nodes

* Worker nodes perform computation and communicate values to
each other

Romeo & Juliet

Two households , both alike in dignity ,

In fair Verona , where we lay our scene ,

From ancient grudge break to new mutiny ,

Where civil blood makes civil hands unclean .

From forth the fatal loins of these two foes

A pair of star-cross'd lovers take their life ;

Whose misadventur'd piteous overthrows

Do with their death bury their parents' strife .

The fearful passage of their death-mark'd love ,

And the continuance of their parents' rage ,

Which , but their children's end , nought could remove ,
Is now the two hours' traffick of our stage ;

The which if you with patient ears attend ,

What here shall miss , our toil shall strive to mend .

The Last Words of Shakespeare

A driver program defines transformations and actions
- A cluster manager assigns tasks to individual worker nodes

* Worker nodes perform computation and communicate values to
each other

Othello

Romeo & Juliet

Two households , both alike in dignity ,

In fair Verona , where we lay our scene ,

From ancient grudge break to new mutiny ,

Where civil blood makes civil hands unclean .

From forth the fatal loins of these two foes

A pair of star-cross'd lovers take their life ;

Whose misadventur'd piteous overthrows

Do with their death bury their parents' strife .

The fearful passage of their death-mark'd love ,

And the continuance of their parents' rage ,

Which , but their children's end , nought could remove ,
Is now the two hours' traffick of our stage ;

The which if you with patient ears attend ,

What here shall miss , our toil shall strive to mend .

The Last Words of Shakespeare

A driver program defines transformations and actions

- A cluster manager assigns tasks to individual worker nodes

* Worker nodes perform computation and communicate values to

each other

Driver Program

SparkContext

<

Cluster Manager

4 Othello
r 3 .
Worker Mode 71 Romeo & Juliet
Executor | Cache | | | Two households , both alike in dignity ,
. In fair Verona , where we lay our scene ,
Task Task N From ancient grudge break to new mutiny ,
x Where civil blood makes civil hands unclean
T . From forth the fatal loins of these two foes
i A pair of star-cross'd lovers take their life ;
Worker Node l . Whose misadventur'd piteous overthrows
5 Do with their death bury their parents' strife
Executor | Cache | |+ The fearful passage of their death-mark'd love ,
1 And the continuance of their parents' rage ,
Which , but their children's end , nought could remove ,
Task Task Is now the two hours' traffick of our stage ;
The which if you with patient ears attend ,
What here shall miss , our toil shall strive to mend

The Last Words of Shakespeare

The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager

The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager

>>> SC

The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager

« An RDD can be constructed from the lines of a text file

>>> SC

The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager

« An RDD can be constructed from the lines of a text file

>>> SC

>>> shakes = sc.textFile('shakespeare.txt")

The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager
- An RDD can be constructed from the lines of a text file

- The sortBy transformation and take action are methods

>>> SC

>>> shakes = sc.textFile('shakespeare.txt")

The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager
- An RDD can be constructed from the lines of a text file

- The sortBy transformation and take action are methods

>>> SC

>>> shakes = sc.textFile('shakespeare.txt")
>>> shakes.sortBy(lambda line: line, False)

The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager
- An RDD can be constructed from the lines of a text file

- The sortBy transformation and take action are methods

>>> SC

>>> shakes = sc.textFile('shakespeare.txt")
>>> shakes.sortBy(lambda line: line, False)
.take(2)

The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager
- An RDD can be constructed from the lines of a text file

- The sortBy transformation and take action are methods

>>> SC

>>> shakes = sc.textFile('shakespeare.txt")
>>> shakes.sortBy(lambda line: line, False)
.take(2)

The Last Words of Shakespeare (demo)

- A SparkContext gives access to the cluster manager
- An RDD can be constructed from the lines of a text file

- The sortBy transformation and take action are methods

>>> SC

>>> shakes = sc.textFile('shakespeare.txt")
>>> shakes.sortBy(lambda line: line, False)
.take(2)

What Does Apache Spark Provide?

What Does Apache Spark Provide?

- Fault tolerance: A machine or hard drive might crash

What Does Apache Spark Provide?

- Fault tolerance: A machine or hard drive might crash

- The cluster manager automatically re-runs failed tasks

What Does Apache Spark Provide?

- Fault tolerance: A machine or hard drive might crash
- The cluster manager automatically re-runs failed tasks

- Speed: Some machine might be slow because 1t's overloaded

What Does Apache Spark Provide?

- Fault tolerance: A machine or hard drive might crash
- The cluster manager automatically re-runs failed tasks
- Speed: Some machine might be slow because 1t's overloaded

- The cluster manager can run multiple copies of a task
and keep the result of the one that finishes first

What Does Apache Spark Provide?

- Fault tolerance: A machine or hard drive might crash
- The cluster manager automatically re-runs failed tasks
- Speed: Some machine might be slow because 1t's overloaded

- The cluster manager can run multiple copies of a task
and keep the result of the one that finishes first

- Monitoring: Will my job finish before dinner?!?

What Does Apache Spark Provide?

- Fault tolerance: A machine or hard drive might crash
- The cluster manager automatically re-runs failed tasks
- Speed: Some machine might be slow because 1t's overloaded

- The cluster manager can run multiple copies of a task
and keep the result of the one that finishes first

- Monitoring: Will my job finish before dinner?!?

- The cluster manager provides a web-based interface
describing jobs

What Does Apache Spark Provide?

- Fault tolerance: A machine or hard drive might crash
- The cluster manager automatically re-runs failed tasks
- Speed: Some machine might be slow because 1t's overloaded

- The cluster manager can run multiple copies of a task
and keep the result of the one that finishes first

- Monitoring: Will my job finish before dinner?!?

- The cluster manager provides a web-based interface
describing jobs

« Abstraction!

MapReduce

MapReduce Applications

MapReduce Applications

« An important early distributed processing system was
MapReduce, published by Google 1in 2004

MapReduce Applications

« An important early distributed processing system was
MapReduce, published by Google 1in 2004

- Simple structure that happened to capture many common data
processing tasks

MapReduce Applications

« An important early distributed processing system was
MapReduce, published by Google 1in 2004

- Simple structure that happened to capture many common data
processing tasks

- Step 1: Each element in an input collection produces
zero or more key-value pairs (map)

MapReduce Applications

« An important early distributed processing system was
MapReduce, published by Google 1in 2004

- Simple structure that happened to capture many common data
processing tasks

- Step 1: Each element in an input collection produces
zero or more key-value pairs (map)

- Step 2: All key-value pairs that share a key are
aggregated together (shuffle)

MapReduce Applications

« An important early distributed processing system was
MapReduce, published by Google 1in 2004

- Simple structure that happened to capture many common data
processing tasks

- Step 1: Each element in an input collection produces
zero or more key-value pairs (map)

- Step 2: All key-value pairs that share a key are
aggregated together (shuffle)

- Step 3: ALl the values for a key are processed as a
sequence (reduce)

MapReduce Applications

« An important early distributed processing system was
MapReduce, published by Google 1in 2004

- Simple structure that happened to capture many common data
processing tasks

- Step 1: Each element in an input collection produces
zero or more key-value pairs (map)

- Step 2: All key-value pairs that share a key are
aggregated together (shuffle)

- Step 3: ALl the values for a key are processed as a
sequence (reduce)

- Early applications: 1ndexing web pages, computing PageRank

MapReduce Evaluation Model

MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

Google MapReduce
Is a Big Data framework
For batch processing

MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

Google MapReduce
Is a Big Data framework }
For batch processing — mapper - }

MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

(Google MapReduce)
Is a Big Data framework }
For batch processing — mapper - }

MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

(Google MapReduce)

Is a Big Data framework }

For batch processing — mapper - }
)
o: 2
a: 1
u: 1
e: 3
—

MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

Google MapReduce
(Is a Big Data framework)}
For batch processing — mapper - }

WEFEEFELEN

M cCc v O

MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

Google MapReduce
(Is a Big Data framework)}

For batch processing — mapper - } —_—
— i: 1
— |a: 4
2 | (e 1
1 |fo: 1
1 ———
3

M cCc v O

MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

Google MapReduce
Is a Big Data framework }

(For batch processing) — Mmapper o } PR
— i: 1
— |a: 4
2 | (e 1
1 |fo: 1
1 ——
3

M cCc v O

MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

Google MapReduce
Is a Big Data framework } —
(For batch processing) — mapper — b — | X 1
- i 1 o: 2
— |a: 4 e 1
or 2 ||er 1|21
a: 1 o: 1
u: 1 | ~V—————
e: 3
———

MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

Google MapReduce
Is a Big Data framework } —
For batch processing —, Mapper — b —— | 1
- i 1 o: 2
— |a: 4 e 1
o: 2 ||er 1|21
a: 1 o: 1
u: 1 | ~V—————
e: 3
———

MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

- Reduce step: For each intermediate key, apply a reducer
function to accumulate all values associated with that key

Google MapReduce

Is a Big Data framework } —
For batch processing —, Mapper — b —— | 1
- i 1 o: 2
— |a: 4 || 1
o: 2 ||er 1|2+ 1
a: 1 o: 1
u: 1 [M~
e: 3
———

MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting
intermediate key-value pairs

- Reduce step: For each intermediate key, apply a reducer
function to accumulate all values associated with that key

- All key-value pairs with the same key are processed

together

Google MapReduce

Is a Big Data framework } —

For batch processing —, Mapper — b —— | 1

— i 1 0o: 2

— |a: 4 e 1
o: 2 ||er 1 ||1F 1
a: 1 o: 1
u: 1 | ~———
e: 3
——

MapReduce Evaluation Model

MapReduce Evaluation Model

- Reduce step: For each intermediate key, apply a reducer
function to accumulate all values associated with that key

MapReduce Evaluation Model

- Reduce step: For each intermediate key, apply a reducer
function to accumulate all values associated with that key

ALl key-value pairs with the same key are processed
together

MapReduce Evaluation Model

- Reduce step: For each intermediate key, apply a reducer
function to accumulate all values associated with that key

ALl key-value pairs with the same key are processed
together

Google MapReduce

Is a Big Data framework } —_—
For batch processing L mapper — | a: 1
) ” ir 1 ||0F 2
— a4 ||& 1
o: 2 ||e: 1 11
a: 1 o: 1 __‘
u: 1 | V——~
e: 3
——

MapReduce Evaluation Model

- Reduce step: For each intermediate key, apply a reducer
function to accumulate all values associated with that key

ALl key-value pairs with the same key are processed
together

Google MapReduce

Is a Big Data framework } ——
For batch processing L mapper — | a: 1
) ” ir 1 ||0F 2
— a4 ||& 1
o: 2 ||e: 1 11
a: 1 o: 1 __‘
u: 1 | V——~
} reducer - e: 3

MapReduce Evaluation Model

- Reduce step: For each intermediate key, apply a reducer
function to accumulate all values associated with that key

ALl key-value pairs with the same key are processed
together

Google MapReduce
Is a Big Data framework }

)
For batch processing L mapper — | a: 1
) } ir 1 ||0F 2
— |a: 4 || &1
: .3
o: 2 |]e: 1 1
4 R a: 1 o: 1 o
a: 4 - 1 | —m
a: 1 ’, u-.
a: 1 reducer - e: 3
- o— —
—— }

MapReduce Evaluation Model

- Reduce step: For each intermediate key, apply a reducer
function to accumulate all values associated with that key

ALl key-value pairs with the same key are processed
together

Google MapReduce
Is a Big Data framework }

)
For batch processing - mapper — R -
) } ir 1 ||0F 2
— |a: 4 || &1
: .3
o: 2 |]|e:r 1 Le
f R a: 1 o: 1
a: 4 - 1 | —m
a: 1 ’, o
a: 1 reducer - e: 3
: — —
— >a6

MapReduce on Apache Spark

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

data.flatMap(fn)

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

data.flatMap(fn)

data.reduceByKey(fn)

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression

data.flatMap(fn)

data.reduceByKey(fn)

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression Data

data.flatMap(fn)

data.reduceByKey(fn)

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression Data fn Input

data.flatMap(fn)

data.reduceByKey(fn)

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression Data fn Input fn Output

data.flatMap(fn)

data.reduceByKey(fn)

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression Data fn Input fn Output Result

data.flatMap(fn)

data.reduceByKey(fn)

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression Data fn Input fn Output Result

data.flatMap(fn) Values

data.reduceByKey(fn)

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression Data fn Input fn Output Result

data.flatMap(fn) Values One value

data.reduceByKey(fn)

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression Data fn Input fn Output Result

data.flatMap(fn) Values One value Zero or more
key-value pairs

data.reduceByKey(fn)

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression Data fn Input fn Output Result

data.flatMap(fn) Values One value Zero or more All key-value
key-value pairs pairs returned
by calls to fn

data.reduceByKey(fn)

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression Data fn Input fn Output Result

data.flatMap(fn) Values One value Zero or more All key-value
key-value pairs pairs returned
by calls to fn

data.reduceByKey(fn) Key-value
pairs

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression Data fn Input fn Output Result

data.flatMap(fn) Values One value Zero or more All key-value
key-value pairs pairs returned
by calls to fn

data.reduceByKey(fn) Key-value Two values
pairs

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression Data fn Input fn Output Result

data.flatMap(fn) Values One value Zero or more All key-value
key-value pairs pairs returned
by calls to fn

data.reduceByKey(fn) Key-value Two values One value
pairs

MapReduce on Apache Spark

Key-value pairs are just two—element Python tuples

Call Expression

data.flatMap(fn)

data.reduceByKey(fn)

Data fn Input

Values One value

Key-value Two values
pairs

fn Output Result

/ero or more All key-value
key-value pairs pairs returned
by calls to fn

One value One key-value
pair for each
unique key

MapReduce on Apache Spark (demo)

Key-value pairs are just two—element Python tuples

Call Expression Data fn Input fn Output Result

data.flatMap(fn) Values One value Zero or more All key-value
key-value pairs pairs returned
by calls to fn

data.reduceByKey(fn) Key-value Two values One value One key-value
pairs pair for each
unique key

Summary

Summary

- Some problems are too big for one computer to solve!

Summary

- Some problems are too big for one computer to solve!

- However, distributed programming comes with 1its own 1ssues

Summary

- Some problems are too big for one computer to solve!
- However, distributed programming comes with 1its own 1ssues

- We can use abstractions (such as Apache Spark) to manage
some of the complexity that is inevitable when running
programs on many machines

