
Marvin Zhang 
08/08/2016

Lecture 27: Theory of Computation
Announcements

Roadmap

• This week (Applications), the 
goals are: 

• To go beyond CS 61A and see 
examples of what comes next 

• To wrap up CS 61A!

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Theoretical Computer Science

• The subfield of computer science that focuses on more 
abstract and mathematical aspects of computing 

• A very broad and diverse subfield that interacts with 
many other fields in and outside of computer science 

• A big part of this subfield is theory of computation 

• We will look at two topics in theory of computation: 
• Computability theory 

• “Can my computer solve this problem?” 
• Complexity theory 

• “Can my computer solve this problem efficiently?” 
• If today is interesting, consider CS 170 and CS 172

What can computers do?

Computability Theory

The Halting Problem

• Can computers solve any problem we give them? 
• If not, what can’t they do? 

• One useful problem we would like to solve, called the 
halting problem, is to check if a function runs into an 
infinite loop, since we would usually like to avoid this 
• Let’s focus on functions that take in one argument 

• Can we write a function halts that takes in a function 
func and an input x and returns whether or not func halts 
when given input x?

def whoops(x):
    while True:
        pass

def okay(x):
    return x + 1

def whookay(x):
    while x != 0:
        x -= 2



The Halting Problem

• It turns out that we cannot write halts! There is no 
implementation that accomplishes what we want 

• The halting problem is called undecidable, which 
basically means that we can’t solve it using a computer 

• We can prove that we cannot write halts through a proof 
by contradiction: 

1. Assume that we can write halts 

2. Show that this leads to a logical contradiction 

3. Conclude that our assumption must be false

def halts(func, x):
    # ???

The Halting Problem

1. Assume that we can write halts 
• Let’s say we have an implementation of halts, that works 

for every function func and every input x: 

2. Show that this leads to a logical contradiction 
• Let’s write another function very_bad that takes in a 

function func and does the following:

def halts(func, x):
    """Returns whether or not func ever stops  
    when given x as input.  
    """

def very_bad(func):
    if halts(func, func):  # check if func(func) halts
        while True:  # loop forever
            pass
    else:
        return  # halt

The Halting Problem

2. Show that this leads to a logical contradiction 

• What happens when we call very_bad(very_bad)? 
• If very_bad(very_bad) halts, then loop forever 

• If very_bad(very_bad) does not halt, then halt 

• So... does very_bad(very_bad) halt or not? 
• It must either halt or not halt, there exists no 

third option

def very_bad(func):
    if halts(func, func):  # check if func(func) halts
        while True:  # loop forever
            pass
    else:
        return  # halt

The Halting Problem

2. Show that this leads to a logical contradiction 

• If very_bad(very_bad) halts, 
• Then very_bad(very_bad) does not halt 

• If very_bad(very_bad) does not halt, 
• Then very_bad(very_bad) halts 

• This is a contradiction! It simply isn’t possible 

3. Conclude that our assumption must be false 
• very_bad is valid Python, there is nothing wrong there 

• So it must be the case that our assumption is wrong 
• Therefore, there is no way to write halts, and the 

halting problem must be undecidable

Decidability

• Roughly speaking, the decidability of a problem is whether a 
computer can solve the particular problem 
• The halting problem is undecidable, as we have shown 
• All other problems we have studied are decidable, because we 

have written code for all of them! 
• There are other problems that are undecidable, and there are 

various ways to prove their undecidability 
• One way is proof by contradiction, which we have seen 

• Another way is to reduce the problem to the halting problem 
• In a reduction, we find a way to solve the halting problem using 

the solution to another problem 
• “If I can solve this problem, then I can also solve the halting 

problem” implies: 
• “I can’t solve this problem, because I can’t solve the 

halting problem.”

Decidability

• As an example, we can’t write a function computes_same 
that takes in two functions f1 and f2 and returns whether 
or not f1(y) == f2(y) for all inputs y 

• “If I can solve computes_same, then I can also solve the 
halting problem”

def computes_same(f1, f2):
    # ???

def halts(func, x):
    def f1(y):
        func(x)
        return 0
    def f2(y):
        return 0
    return computes_same(f1, f2)



Decidability

• If f1(y) == f2(y) for all inputs y, then f1(y) == 0 for 
all inputs y 
• This implies that func(x) halts, because otherwise 

f1(y) is undefined for all inputs y
• So this successfully solves the halting problem! 

• “I can’t solve computes_same, because I can’t solve the 
halting problem.”

def halts(func, x):
    def f1(y):
        func(x)
        return 0
    def f2(y):
        return 0
    return computes_same(f1, f2)

What can computers do efficiently?

Complexity Theory

Complexity

• So, there are some problems that computers can’t solve 

• For all the problems that can be solved, can we solve 
them efficiently? This is a much more practical concern

def fib(n):
    if n == 1:
        return 0
    elif n == 2:
        return 1
    return fib(n-1) + fib(n-2)

def fib(n):
    curr, next = 0, 1
    while n > 0:
        curr, next = next, curr + next
        n -= 1
    return curr

ϴ(𝜙n) 
exponential runtime 

(very bad!)

ϴ(n) 
linear runtime 
(much better!)

Orders of Growth
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ϴ(n3)
…
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iterative 
Fibonacci

recursive 
Fibonacci

Polynomial	runtime	
Generally	pretty	fast	

Considered	good

Exponential	runtime	or	worse	
Gets	slow	quickly	as	n	grows	

Intractable

Complexity Classes

• We often make the distinction between polynomial runtime 
and exponential runtime, and ignore the differences 
between different polynomials or different exponentials 

• Roughly speaking, solutions with polynomial runtime are 
usually “good enough”, whereas exponential runtime is 
usually too bad to be useful 

• Practically, there is certainly a difference between 
solutions with, e.g., ϴ(n) runtime and ϴ(n3) runtime 

• But this is a smaller difference than solutions with, 
e.g., ϴ(n3) runtime and ϴ(2n) runtime 

• It is also generally easier to reduce polynomials than 
to reduce exponential runtime to polynomial runtime 

• Ignoring the smaller differences allows us to develop 
more rigorous theory involving complexity classes

Disclaimer

• The rest of this lecture is less formal, because we have 
to skip some of the more complicated details 

• So, don’t quote what I say or write, because I will get 
in trouble 
• Instead, just try to understand the main ideas 

• If you want all of the details, I refer you to: 
• CS 170 (Efficient Algorithms and Intractable Problems) 
• CS 172 (Computability and Complexity) 

• Or the equivalent courses at other institutions



Complexity Classes

• The two most famous complexity classes are called P and NP 
• The class P contains problems that have solutions with 

polynomial runtime 

• Fibonacci is in this class, since the iterative 
solution has linear runtime 

• Most problems we have seen so far are in P 
• The class NP contains problems where the answer can be 

verified in polynomial time 

• If I tell you: “The nth Fibonacci number is k” 
• Can you verify that this is correct in polynomial time? 

• In this example, the answer is yes, because you can just 
run the iterative solution to check, so Fibonacci is also 
in NP

Example: Hamiltonian Path

• Given a graph, is there a path through the graph that 
visits each vertex exactly once? 

• Is this problem in NP? Yes! 

• If I am given a graph and a proposed 
Hamiltonian path, I can easily verify 
whether or not the path is correct 

• I just have to trace the path through 
the graph and make sure it visits every vertex 

• Is this problem in P? We don’t know 
• We have seen two exponential runtime solutions for this 

problem, one in Logic and a similar one in Python 

• But there could be another solution with polynomial 
runtime, we can’t be sure

(demo)

P and NP

• Is every problem in P also in NP? Yes! 

• If a problem is in P, then it has a solution with 
polynomial runtime 

• So if I want to verify an answer for an instance of the 
problem, I can just run the solution and compare 

• This takes polynomial time, so the problem is in NP 
• Is every problem in NP also in P? 

• In other words, if I can verify an answer for a problem 
in polynomial time, can I also compute that answer 
myself in polynomial time? 

• No one knows 
• But most people think it’s unlikely

P = NP (?)

• So, we know that P is a subset of NP, but we still don’t 
know whether or not they are equal 

• Most people think they’re not equal, because you could do a 
lot of crazy things if they are 
• Automatically generate mathematical proofs 
• Optimally play Candy Crush, Pokémon, and Super Mario Bros 
• Break many types of security encryption 

• Verifying a password is very easy, just type it in and 
see if it works 

• Imagine if figuring out a password was just as easy 

• The P = NP problem is one of the seven Millennium prizes 

• If I just proved that P = NP, how do I take over the world?

Summary

• Computability theory studies what problems computers can 
and cannot solve 
• The halting problem cannot be solved by a computer 

• Reducing other problems to the halting problem shows 
that they cannot be solved either 

• This is not really a practical concern for most people 
• Complexity theory studies what problems computers can and 

cannot solve efficiently 
• This is a practical concern for basically everyone 
• There are still many unanswered questions, for example, 

whether or not P = NP 

• CS 170 and CS 172 go into more detail on this material


