
Marvin Zhang
08/08/2016

Lecture 27: Theory of Computation
Announcements

Roadmap

• This week (Applications), the
goals are:

• To go beyond CS 61A and see
examples of what comes next

• To wrap up CS 61A!

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Theoretical Computer Science

• The subfield of computer science that focuses on more
abstract and mathematical aspects of computing

• A very broad and diverse subfield that interacts with
many other fields in and outside of computer science

• A big part of this subfield is theory of computation

• We will look at two topics in theory of computation:
• Computability theory

• “Can my computer solve this problem?”
• Complexity theory

• “Can my computer solve this problem efficiently?”
• If today is interesting, consider CS 170 and CS 172

What can computers do?

Computability Theory

The Halting Problem

• Can computers solve any problem we give them?
• If not, what can’t they do?

• One useful problem we would like to solve, called the
halting problem, is to check if a function runs into an
infinite loop, since we would usually like to avoid this
• Let’s focus on functions that take in one argument

• Can we write a function halts that takes in a function
func and an input x and returns whether or not func halts
when given input x?

def whoops(x):
 while True:
 pass

def okay(x):
 return x + 1

def whookay(x):
 while x != 0:
 x -= 2

The Halting Problem

• It turns out that we cannot write halts! There is no
implementation that accomplishes what we want

• The halting problem is called undecidable, which
basically means that we can’t solve it using a computer

• We can prove that we cannot write halts through a proof
by contradiction:

1. Assume that we can write halts

2. Show that this leads to a logical contradiction

3. Conclude that our assumption must be false

def halts(func, x):
 # ???

The Halting Problem

1. Assume that we can write halts
• Let’s say we have an implementation of halts, that works

for every function func and every input x:

2. Show that this leads to a logical contradiction
• Let’s write another function very_bad that takes in a

function func and does the following:

def halts(func, x):
 """Returns whether or not func ever stops  
 when given x as input.  
 """

def very_bad(func):
 if halts(func, func): # check if func(func) halts
 while True: # loop forever
 pass
 else:
 return # halt

The Halting Problem

2. Show that this leads to a logical contradiction

• What happens when we call very_bad(very_bad)?
• If very_bad(very_bad) halts, then loop forever

• If very_bad(very_bad) does not halt, then halt

• So... does very_bad(very_bad) halt or not?
• It must either halt or not halt, there exists no

third option

def very_bad(func):
 if halts(func, func): # check if func(func) halts
 while True: # loop forever
 pass
 else:
 return # halt

The Halting Problem

2. Show that this leads to a logical contradiction

• If very_bad(very_bad) halts,
• Then very_bad(very_bad) does not halt

• If very_bad(very_bad) does not halt,
• Then very_bad(very_bad) halts

• This is a contradiction! It simply isn’t possible

3. Conclude that our assumption must be false
• very_bad is valid Python, there is nothing wrong there

• So it must be the case that our assumption is wrong
• Therefore, there is no way to write halts, and the

halting problem must be undecidable

Decidability

• Roughly speaking, the decidability of a problem is whether a
computer can solve the particular problem
• The halting problem is undecidable, as we have shown
• All other problems we have studied are decidable, because we

have written code for all of them!
• There are other problems that are undecidable, and there are

various ways to prove their undecidability
• One way is proof by contradiction, which we have seen

• Another way is to reduce the problem to the halting problem
• In a reduction, we find a way to solve the halting problem using

the solution to another problem
• “If I can solve this problem, then I can also solve the halting

problem” implies:
• “I can’t solve this problem, because I can’t solve the

halting problem.”

Decidability

• As an example, we can’t write a function computes_same
that takes in two functions f1 and f2 and returns whether
or not f1(y) == f2(y) for all inputs y

• “If I can solve computes_same, then I can also solve the
halting problem”

def computes_same(f1, f2):
 # ???

def halts(func, x):
 def f1(y):
 func(x)
 return 0
 def f2(y):
 return 0
 return computes_same(f1, f2)

Decidability

• If f1(y) == f2(y) for all inputs y, then f1(y) == 0 for
all inputs y
• This implies that func(x) halts, because otherwise

f1(y) is undefined for all inputs y
• So this successfully solves the halting problem!

• “I can’t solve computes_same, because I can’t solve the
halting problem.”

def halts(func, x):
 def f1(y):
 func(x)
 return 0
 def f2(y):
 return 0
 return computes_same(f1, f2)

What can computers do efficiently?

Complexity Theory

Complexity

• So, there are some problems that computers can’t solve

• For all the problems that can be solved, can we solve
them efficiently? This is a much more practical concern

def fib(n):
 if n == 1:
 return 0
 elif n == 2:
 return 1
 return fib(n-1) + fib(n-2)

def fib(n):
 curr, next = 0, 1
 while n > 0:
 curr, next = next, curr + next
 n -= 1
 return curr

ϴ(𝜙n)
exponential runtime

(very bad!)

ϴ(n)
linear runtime
(much better!)

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

ϴ(n3)
…

ϴ(1.1n)
ϴ(𝜙n)
ϴ(2n)…

iterative
Fibonacci

recursive
Fibonacci

Polynomial	runtime	
Generally	pretty	fast	

Considered	good

Exponential	runtime	or	worse	
Gets	slow	quickly	as	n	grows	

Intractable

Complexity Classes

• We often make the distinction between polynomial runtime
and exponential runtime, and ignore the differences
between different polynomials or different exponentials

• Roughly speaking, solutions with polynomial runtime are
usually “good enough”, whereas exponential runtime is
usually too bad to be useful

• Practically, there is certainly a difference between
solutions with, e.g., ϴ(n) runtime and ϴ(n3) runtime

• But this is a smaller difference than solutions with,
e.g., ϴ(n3) runtime and ϴ(2n) runtime

• It is also generally easier to reduce polynomials than
to reduce exponential runtime to polynomial runtime

• Ignoring the smaller differences allows us to develop
more rigorous theory involving complexity classes

Disclaimer

• The rest of this lecture is less formal, because we have
to skip some of the more complicated details

• So, don’t quote what I say or write, because I will get
in trouble
• Instead, just try to understand the main ideas

• If you want all of the details, I refer you to:
• CS 170 (Efficient Algorithms and Intractable Problems)
• CS 172 (Computability and Complexity)

• Or the equivalent courses at other institutions

Complexity Classes

• The two most famous complexity classes are called P and NP
• The class P contains problems that have solutions with

polynomial runtime

• Fibonacci is in this class, since the iterative
solution has linear runtime

• Most problems we have seen so far are in P
• The class NP contains problems where the answer can be

verified in polynomial time

• If I tell you: “The nth Fibonacci number is k”
• Can you verify that this is correct in polynomial time?

• In this example, the answer is yes, because you can just
run the iterative solution to check, so Fibonacci is also
in NP

Example: Hamiltonian Path

• Given a graph, is there a path through the graph that
visits each vertex exactly once?

• Is this problem in NP? Yes!

• If I am given a graph and a proposed 
Hamiltonian path, I can easily verify 
whether or not the path is correct

• I just have to trace the path through 
the graph and make sure it visits every vertex

• Is this problem in P? We don’t know
• We have seen two exponential runtime solutions for this

problem, one in Logic and a similar one in Python

• But there could be another solution with polynomial
runtime, we can’t be sure

(demo)

P and NP

• Is every problem in P also in NP? Yes!

• If a problem is in P, then it has a solution with
polynomial runtime

• So if I want to verify an answer for an instance of the
problem, I can just run the solution and compare

• This takes polynomial time, so the problem is in NP
• Is every problem in NP also in P?

• In other words, if I can verify an answer for a problem
in polynomial time, can I also compute that answer
myself in polynomial time?

• No one knows
• But most people think it’s unlikely

P = NP (?)

• So, we know that P is a subset of NP, but we still don’t
know whether or not they are equal

• Most people think they’re not equal, because you could do a
lot of crazy things if they are
• Automatically generate mathematical proofs
• Optimally play Candy Crush, Pokémon, and Super Mario Bros
• Break many types of security encryption

• Verifying a password is very easy, just type it in and
see if it works

• Imagine if figuring out a password was just as easy

• The P = NP problem is one of the seven Millennium prizes

• If I just proved that P = NP, how do I take over the world?

Summary

• Computability theory studies what problems computers can
and cannot solve
• The halting problem cannot be solved by a computer

• Reducing other problems to the halting problem shows
that they cannot be solved either

• This is not really a practical concern for most people
• Complexity theory studies what problems computers can and

cannot solve efficiently
• This is a practical concern for basically everyone
• There are still many unanswered questions, for example,

whether or not P = NP

• CS 170 and CS 172 go into more detail on this material

