
Marvin Zhang
08/08/2016

Lecture 27: Theory of Computation

Announcements

http://cs61a.org/

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Applications), the
goals are:

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Applications), the
goals are:
• To go beyond CS 61A and see

examples of what comes next

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Roadmap

• This week (Applications), the
goals are:
• To go beyond CS 61A and see

examples of what comes next
• To wrap up CS 61A!

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Theoretical Computer Science

Theoretical Computer Science

• The subfield of computer science that focuses on more
abstract and mathematical aspects of computing

Theoretical Computer Science

• The subfield of computer science that focuses on more
abstract and mathematical aspects of computing

• A very broad and diverse subfield that interacts with
many other fields in and outside of computer science

Theoretical Computer Science

• The subfield of computer science that focuses on more
abstract and mathematical aspects of computing

• A very broad and diverse subfield that interacts with
many other fields in and outside of computer science

• A big part of this subfield is theory of computation

Theoretical Computer Science

• The subfield of computer science that focuses on more
abstract and mathematical aspects of computing

• A very broad and diverse subfield that interacts with
many other fields in and outside of computer science

• A big part of this subfield is theory of computation
• We will look at two topics in theory of computation:

Theoretical Computer Science

• The subfield of computer science that focuses on more
abstract and mathematical aspects of computing

• A very broad and diverse subfield that interacts with
many other fields in and outside of computer science

• A big part of this subfield is theory of computation
• We will look at two topics in theory of computation:

• Computability theory

Theoretical Computer Science

• The subfield of computer science that focuses on more
abstract and mathematical aspects of computing

• A very broad and diverse subfield that interacts with
many other fields in and outside of computer science

• A big part of this subfield is theory of computation
• We will look at two topics in theory of computation:

• Computability theory

• “Can my computer solve this problem?”

Theoretical Computer Science

• The subfield of computer science that focuses on more
abstract and mathematical aspects of computing

• A very broad and diverse subfield that interacts with
many other fields in and outside of computer science

• A big part of this subfield is theory of computation
• We will look at two topics in theory of computation:

• Computability theory

• “Can my computer solve this problem?”
• Complexity theory

Theoretical Computer Science

• The subfield of computer science that focuses on more
abstract and mathematical aspects of computing

• A very broad and diverse subfield that interacts with
many other fields in and outside of computer science

• A big part of this subfield is theory of computation
• We will look at two topics in theory of computation:

• Computability theory

• “Can my computer solve this problem?”
• Complexity theory

• “Can my computer solve this problem efficiently?”

Theoretical Computer Science

• The subfield of computer science that focuses on more
abstract and mathematical aspects of computing

• A very broad and diverse subfield that interacts with
many other fields in and outside of computer science

• A big part of this subfield is theory of computation
• We will look at two topics in theory of computation:

• Computability theory

• “Can my computer solve this problem?”
• Complexity theory

• “Can my computer solve this problem efficiently?”
• If today is interesting, consider CS 170 and CS 172

What can computers do?

Computability Theory

The Halting Problem

The Halting Problem

• Can computers solve any problem we give them?

The Halting Problem

• Can computers solve any problem we give them?
• If not, what can’t they do?

The Halting Problem

• Can computers solve any problem we give them?
• If not, what can’t they do?

• One useful problem we would like to solve, called the
halting problem, is to check if a function runs into an
infinite loop, since we would usually like to avoid this

The Halting Problem

• Can computers solve any problem we give them?
• If not, what can’t they do?

• One useful problem we would like to solve, called the
halting problem, is to check if a function runs into an
infinite loop, since we would usually like to avoid this
• Let’s focus on functions that take in one argument

The Halting Problem

• Can computers solve any problem we give them?
• If not, what can’t they do?

• One useful problem we would like to solve, called the
halting problem, is to check if a function runs into an
infinite loop, since we would usually like to avoid this
• Let’s focus on functions that take in one argument

def whoops(x):
 while True:
 pass

The Halting Problem

• Can computers solve any problem we give them?
• If not, what can’t they do?

• One useful problem we would like to solve, called the
halting problem, is to check if a function runs into an
infinite loop, since we would usually like to avoid this
• Let’s focus on functions that take in one argument

def whoops(x):
 while True:
 pass

def okay(x):
 return x + 1

The Halting Problem

• Can computers solve any problem we give them?
• If not, what can’t they do?

• One useful problem we would like to solve, called the
halting problem, is to check if a function runs into an
infinite loop, since we would usually like to avoid this
• Let’s focus on functions that take in one argument

def whoops(x):
 while True:
 pass

def okay(x):
 return x + 1

def whookay(x):
 while x != 0:
 x -= 2

The Halting Problem

• Can computers solve any problem we give them?
• If not, what can’t they do?

• One useful problem we would like to solve, called the
halting problem, is to check if a function runs into an
infinite loop, since we would usually like to avoid this
• Let’s focus on functions that take in one argument

• Can we write a function halts that takes in a function
func and an input x and returns whether or not func halts
when given input x?

def whoops(x):
 while True:
 pass

def okay(x):
 return x + 1

def whookay(x):
 while x != 0:
 x -= 2

The Halting Problem

The Halting Problem

def halts(func, x):
 # ???

The Halting Problem

• It turns out that we cannot write halts! There is no
implementation that accomplishes what we want

def halts(func, x):
 # ???

The Halting Problem

• It turns out that we cannot write halts! There is no
implementation that accomplishes what we want

• The halting problem is called undecidable, which
basically means that we can’t solve it using a computer

def halts(func, x):
 # ???

The Halting Problem

• It turns out that we cannot write halts! There is no
implementation that accomplishes what we want

• The halting problem is called undecidable, which
basically means that we can’t solve it using a computer

• We can prove that we cannot write halts through a proof
by contradiction:

def halts(func, x):
 # ???

The Halting Problem

• It turns out that we cannot write halts! There is no
implementation that accomplishes what we want

• The halting problem is called undecidable, which
basically means that we can’t solve it using a computer

• We can prove that we cannot write halts through a proof
by contradiction:

1. Assume that we can write halts

def halts(func, x):
 # ???

The Halting Problem

• It turns out that we cannot write halts! There is no
implementation that accomplishes what we want

• The halting problem is called undecidable, which
basically means that we can’t solve it using a computer

• We can prove that we cannot write halts through a proof
by contradiction:

1. Assume that we can write halts

2. Show that this leads to a logical contradiction

def halts(func, x):
 # ???

The Halting Problem

• It turns out that we cannot write halts! There is no
implementation that accomplishes what we want

• The halting problem is called undecidable, which
basically means that we can’t solve it using a computer

• We can prove that we cannot write halts through a proof
by contradiction:

1. Assume that we can write halts

2. Show that this leads to a logical contradiction

3. Conclude that our assumption must be false

def halts(func, x):
 # ???

The Halting Problem

The Halting Problem

1. Assume that we can write halts

The Halting Problem

1. Assume that we can write halts
• Let’s say we have an implementation of halts, that works

for every function func and every input x:

The Halting Problem

1. Assume that we can write halts
• Let’s say we have an implementation of halts, that works

for every function func and every input x:

def halts(func, x):
 """Returns whether or not func ever stops  
 when given x as input.  
 """

The Halting Problem

1. Assume that we can write halts
• Let’s say we have an implementation of halts, that works

for every function func and every input x:

2. Show that this leads to a logical contradiction

def halts(func, x):
 """Returns whether or not func ever stops  
 when given x as input.  
 """

The Halting Problem

1. Assume that we can write halts
• Let’s say we have an implementation of halts, that works

for every function func and every input x:

2. Show that this leads to a logical contradiction
• Let’s write another function very_bad that takes in a

function func and does the following:

def halts(func, x):
 """Returns whether or not func ever stops  
 when given x as input.  
 """

The Halting Problem

1. Assume that we can write halts
• Let’s say we have an implementation of halts, that works

for every function func and every input x:

2. Show that this leads to a logical contradiction
• Let’s write another function very_bad that takes in a

function func and does the following:

def halts(func, x):
 """Returns whether or not func ever stops  
 when given x as input.  
 """

def very_bad(func):

The Halting Problem

1. Assume that we can write halts
• Let’s say we have an implementation of halts, that works

for every function func and every input x:

2. Show that this leads to a logical contradiction
• Let’s write another function very_bad that takes in a

function func and does the following:

def halts(func, x):
 """Returns whether or not func ever stops  
 when given x as input.  
 """

def very_bad(func):
 if halts(func, func): # check if func(func) halts

The Halting Problem

1. Assume that we can write halts
• Let’s say we have an implementation of halts, that works

for every function func and every input x:

2. Show that this leads to a logical contradiction
• Let’s write another function very_bad that takes in a

function func and does the following:

def halts(func, x):
 """Returns whether or not func ever stops  
 when given x as input.  
 """

def very_bad(func):
 if halts(func, func): # check if func(func) halts
 while True: # loop forever
 pass

The Halting Problem

1. Assume that we can write halts
• Let’s say we have an implementation of halts, that works

for every function func and every input x:

2. Show that this leads to a logical contradiction
• Let’s write another function very_bad that takes in a

function func and does the following:

def halts(func, x):
 """Returns whether or not func ever stops  
 when given x as input.  
 """

def very_bad(func):
 if halts(func, func): # check if func(func) halts
 while True: # loop forever
 pass
 else:

The Halting Problem

1. Assume that we can write halts
• Let’s say we have an implementation of halts, that works

for every function func and every input x:

2. Show that this leads to a logical contradiction
• Let’s write another function very_bad that takes in a

function func and does the following:

def halts(func, x):
 """Returns whether or not func ever stops  
 when given x as input.  
 """

def very_bad(func):
 if halts(func, func): # check if func(func) halts
 while True: # loop forever
 pass
 else:
 return # halt

The Halting Problem

The Halting Problem

2. Show that this leads to a logical contradiction

The Halting Problem

2. Show that this leads to a logical contradiction
def very_bad(func):
 if halts(func, func): # check if func(func) halts
 while True: # loop forever
 pass
 else:
 return # halt

The Halting Problem

2. Show that this leads to a logical contradiction

• What happens when we call very_bad(very_bad)?

def very_bad(func):
 if halts(func, func): # check if func(func) halts
 while True: # loop forever
 pass
 else:
 return # halt

The Halting Problem

2. Show that this leads to a logical contradiction

• What happens when we call very_bad(very_bad)?
• If very_bad(very_bad) halts, then loop forever

def very_bad(func):
 if halts(func, func): # check if func(func) halts
 while True: # loop forever
 pass
 else:
 return # halt

The Halting Problem

2. Show that this leads to a logical contradiction

• What happens when we call very_bad(very_bad)?
• If very_bad(very_bad) halts, then loop forever
• If very_bad(very_bad) does not halt, then halt

def very_bad(func):
 if halts(func, func): # check if func(func) halts
 while True: # loop forever
 pass
 else:
 return # halt

The Halting Problem

2. Show that this leads to a logical contradiction

• What happens when we call very_bad(very_bad)?
• If very_bad(very_bad) halts, then loop forever
• If very_bad(very_bad) does not halt, then halt

• So... does very_bad(very_bad) halt or not?

def very_bad(func):
 if halts(func, func): # check if func(func) halts
 while True: # loop forever
 pass
 else:
 return # halt

The Halting Problem

2. Show that this leads to a logical contradiction

• What happens when we call very_bad(very_bad)?
• If very_bad(very_bad) halts, then loop forever
• If very_bad(very_bad) does not halt, then halt

• So... does very_bad(very_bad) halt or not?
• It must either halt or not halt, there exists no

third option

def very_bad(func):
 if halts(func, func): # check if func(func) halts
 while True: # loop forever
 pass
 else:
 return # halt

The Halting Problem

The Halting Problem

2. Show that this leads to a logical contradiction

The Halting Problem

2. Show that this leads to a logical contradiction
• If very_bad(very_bad) halts,

The Halting Problem

2. Show that this leads to a logical contradiction
• If very_bad(very_bad) halts,

• Then very_bad(very_bad) does not halt

The Halting Problem

2. Show that this leads to a logical contradiction
• If very_bad(very_bad) halts,

• Then very_bad(very_bad) does not halt
• If very_bad(very_bad) does not halt,

The Halting Problem

2. Show that this leads to a logical contradiction
• If very_bad(very_bad) halts,

• Then very_bad(very_bad) does not halt
• If very_bad(very_bad) does not halt,

• Then very_bad(very_bad) halts

The Halting Problem

2. Show that this leads to a logical contradiction
• If very_bad(very_bad) halts,

• Then very_bad(very_bad) does not halt
• If very_bad(very_bad) does not halt,

• Then very_bad(very_bad) halts
• This is a contradiction! It simply isn’t possible

The Halting Problem

2. Show that this leads to a logical contradiction
• If very_bad(very_bad) halts,

• Then very_bad(very_bad) does not halt
• If very_bad(very_bad) does not halt,

• Then very_bad(very_bad) halts
• This is a contradiction! It simply isn’t possible

3. Conclude that our assumption must be false

The Halting Problem

2. Show that this leads to a logical contradiction
• If very_bad(very_bad) halts,

• Then very_bad(very_bad) does not halt
• If very_bad(very_bad) does not halt,

• Then very_bad(very_bad) halts
• This is a contradiction! It simply isn’t possible

3. Conclude that our assumption must be false
• very_bad is valid Python, there is nothing wrong there

The Halting Problem

2. Show that this leads to a logical contradiction
• If very_bad(very_bad) halts,

• Then very_bad(very_bad) does not halt
• If very_bad(very_bad) does not halt,

• Then very_bad(very_bad) halts
• This is a contradiction! It simply isn’t possible

3. Conclude that our assumption must be false
• very_bad is valid Python, there is nothing wrong there
• So it must be the case that our assumption is wrong

The Halting Problem

2. Show that this leads to a logical contradiction
• If very_bad(very_bad) halts,

• Then very_bad(very_bad) does not halt
• If very_bad(very_bad) does not halt,

• Then very_bad(very_bad) halts
• This is a contradiction! It simply isn’t possible

3. Conclude that our assumption must be false
• very_bad is valid Python, there is nothing wrong there
• So it must be the case that our assumption is wrong
• Therefore, there is no way to write halts, and the

halting problem must be undecidable

Decidability

Decidability

• Roughly speaking, the decidability of a problem is whether a
computer can solve the particular problem

Decidability

• Roughly speaking, the decidability of a problem is whether a
computer can solve the particular problem
• The halting problem is undecidable, as we have shown

Decidability

• Roughly speaking, the decidability of a problem is whether a
computer can solve the particular problem
• The halting problem is undecidable, as we have shown
• All other problems we have studied are decidable, because we

have written code for all of them!

Decidability

• Roughly speaking, the decidability of a problem is whether a
computer can solve the particular problem
• The halting problem is undecidable, as we have shown
• All other problems we have studied are decidable, because we

have written code for all of them!

• There are other problems that are undecidable, and there are
various ways to prove their undecidability

Decidability

• Roughly speaking, the decidability of a problem is whether a
computer can solve the particular problem
• The halting problem is undecidable, as we have shown
• All other problems we have studied are decidable, because we

have written code for all of them!

• There are other problems that are undecidable, and there are
various ways to prove their undecidability

• One way is proof by contradiction, which we have seen

Decidability

• Roughly speaking, the decidability of a problem is whether a
computer can solve the particular problem
• The halting problem is undecidable, as we have shown
• All other problems we have studied are decidable, because we

have written code for all of them!

• There are other problems that are undecidable, and there are
various ways to prove their undecidability

• One way is proof by contradiction, which we have seen
• Another way is to reduce the problem to the halting problem

Decidability

• Roughly speaking, the decidability of a problem is whether a
computer can solve the particular problem
• The halting problem is undecidable, as we have shown
• All other problems we have studied are decidable, because we

have written code for all of them!

• There are other problems that are undecidable, and there are
various ways to prove their undecidability

• One way is proof by contradiction, which we have seen
• Another way is to reduce the problem to the halting problem

• In a reduction, we find a way to solve the halting problem using
the solution to another problem

Decidability

• Roughly speaking, the decidability of a problem is whether a
computer can solve the particular problem
• The halting problem is undecidable, as we have shown
• All other problems we have studied are decidable, because we

have written code for all of them!

• There are other problems that are undecidable, and there are
various ways to prove their undecidability

• One way is proof by contradiction, which we have seen
• Another way is to reduce the problem to the halting problem

• In a reduction, we find a way to solve the halting problem using
the solution to another problem
• “If I can solve this problem, then I can also solve the halting

problem” implies:

Decidability

• Roughly speaking, the decidability of a problem is whether a
computer can solve the particular problem
• The halting problem is undecidable, as we have shown
• All other problems we have studied are decidable, because we

have written code for all of them!

• There are other problems that are undecidable, and there are
various ways to prove their undecidability

• One way is proof by contradiction, which we have seen
• Another way is to reduce the problem to the halting problem

• In a reduction, we find a way to solve the halting problem using
the solution to another problem
• “If I can solve this problem, then I can also solve the halting

problem” implies:
• “I can’t solve this problem, because I can’t solve the

halting problem.”

Decidability

Decidability

• As an example, we can’t write a function computes_same
that takes in two functions f1 and f2 and returns whether
or not f1(y) == f2(y) for all inputs y

Decidability

• As an example, we can’t write a function computes_same
that takes in two functions f1 and f2 and returns whether
or not f1(y) == f2(y) for all inputs y

def computes_same(f1, f2):
 # ???

Decidability

• As an example, we can’t write a function computes_same
that takes in two functions f1 and f2 and returns whether
or not f1(y) == f2(y) for all inputs y

• “If I can solve computes_same, then I can also solve the
halting problem”

def computes_same(f1, f2):
 # ???

Decidability

• As an example, we can’t write a function computes_same
that takes in two functions f1 and f2 and returns whether
or not f1(y) == f2(y) for all inputs y

• “If I can solve computes_same, then I can also solve the
halting problem”

def computes_same(f1, f2):
 # ???

def halts(func, x):

Decidability

• As an example, we can’t write a function computes_same
that takes in two functions f1 and f2 and returns whether
or not f1(y) == f2(y) for all inputs y

• “If I can solve computes_same, then I can also solve the
halting problem”

def computes_same(f1, f2):
 # ???

def halts(func, x):
 def f1(y):

Decidability

• As an example, we can’t write a function computes_same
that takes in two functions f1 and f2 and returns whether
or not f1(y) == f2(y) for all inputs y

• “If I can solve computes_same, then I can also solve the
halting problem”

def computes_same(f1, f2):
 # ???

def halts(func, x):
 def f1(y):
 func(x)

Decidability

• As an example, we can’t write a function computes_same
that takes in two functions f1 and f2 and returns whether
or not f1(y) == f2(y) for all inputs y

• “If I can solve computes_same, then I can also solve the
halting problem”

def computes_same(f1, f2):
 # ???

def halts(func, x):
 def f1(y):
 func(x)
 return 0

Decidability

• As an example, we can’t write a function computes_same
that takes in two functions f1 and f2 and returns whether
or not f1(y) == f2(y) for all inputs y

• “If I can solve computes_same, then I can also solve the
halting problem”

def computes_same(f1, f2):
 # ???

def halts(func, x):
 def f1(y):
 func(x)
 return 0
 def f2(y):

Decidability

• As an example, we can’t write a function computes_same
that takes in two functions f1 and f2 and returns whether
or not f1(y) == f2(y) for all inputs y

• “If I can solve computes_same, then I can also solve the
halting problem”

def computes_same(f1, f2):
 # ???

def halts(func, x):
 def f1(y):
 func(x)
 return 0
 def f2(y):
 return 0

Decidability

• As an example, we can’t write a function computes_same
that takes in two functions f1 and f2 and returns whether
or not f1(y) == f2(y) for all inputs y

• “If I can solve computes_same, then I can also solve the
halting problem”

def computes_same(f1, f2):
 # ???

def halts(func, x):
 def f1(y):
 func(x)
 return 0
 def f2(y):
 return 0
 return computes_same(f1, f2)

Decidability

Decidability

def halts(func, x):
 def f1(y):
 func(x)
 return 0
 def f2(y):
 return 0
 return computes_same(f1, f2)

Decidability

• If f1(y) == f2(y) for all inputs y, then f1(y) == 0 for
all inputs y

def halts(func, x):
 def f1(y):
 func(x)
 return 0
 def f2(y):
 return 0
 return computes_same(f1, f2)

Decidability

• If f1(y) == f2(y) for all inputs y, then f1(y) == 0 for
all inputs y
• This implies that func(x) halts, because otherwise

f1(y) is undefined for all inputs y

def halts(func, x):
 def f1(y):
 func(x)
 return 0
 def f2(y):
 return 0
 return computes_same(f1, f2)

Decidability

• If f1(y) == f2(y) for all inputs y, then f1(y) == 0 for
all inputs y
• This implies that func(x) halts, because otherwise

f1(y) is undefined for all inputs y
• So this successfully solves the halting problem!

def halts(func, x):
 def f1(y):
 func(x)
 return 0
 def f2(y):
 return 0
 return computes_same(f1, f2)

Decidability

• If f1(y) == f2(y) for all inputs y, then f1(y) == 0 for
all inputs y
• This implies that func(x) halts, because otherwise

f1(y) is undefined for all inputs y
• So this successfully solves the halting problem!

• “I can’t solve computes_same, because I can’t solve the
halting problem.”

def halts(func, x):
 def f1(y):
 func(x)
 return 0
 def f2(y):
 return 0
 return computes_same(f1, f2)

What can computers do efficiently?

Complexity Theory

Complexity

Complexity

• So, there are some problems that computers can’t solve

Complexity

• So, there are some problems that computers can’t solve
• For all the problems that can be solved, can we solve

them efficiently? This is a much more practical concern

Complexity

• So, there are some problems that computers can’t solve
• For all the problems that can be solved, can we solve

them efficiently? This is a much more practical concern

def fib(n):
 if n == 1:
 return 0
 elif n == 2:
 return 1
 return fib(n-1) + fib(n-2)

Complexity

• So, there are some problems that computers can’t solve
• For all the problems that can be solved, can we solve

them efficiently? This is a much more practical concern

def fib(n):
 if n == 1:
 return 0
 elif n == 2:
 return 1
 return fib(n-1) + fib(n-2)

ϴ(𝜙n)

Complexity

• So, there are some problems that computers can’t solve
• For all the problems that can be solved, can we solve

them efficiently? This is a much more practical concern

def fib(n):
 if n == 1:
 return 0
 elif n == 2:
 return 1
 return fib(n-1) + fib(n-2)

ϴ(𝜙n)
exponential runtime

Complexity

• So, there are some problems that computers can’t solve
• For all the problems that can be solved, can we solve

them efficiently? This is a much more practical concern

def fib(n):
 if n == 1:
 return 0
 elif n == 2:
 return 1
 return fib(n-1) + fib(n-2)

ϴ(𝜙n)
exponential runtime

(very bad!)

Complexity

• So, there are some problems that computers can’t solve
• For all the problems that can be solved, can we solve

them efficiently? This is a much more practical concern

def fib(n):
 if n == 1:
 return 0
 elif n == 2:
 return 1
 return fib(n-1) + fib(n-2)

def fib(n):
 curr, next = 0, 1
 while n > 0:
 curr, next = next, curr + next
 n -= 1
 return curr

ϴ(𝜙n)
exponential runtime

(very bad!)

Complexity

• So, there are some problems that computers can’t solve
• For all the problems that can be solved, can we solve

them efficiently? This is a much more practical concern

def fib(n):
 if n == 1:
 return 0
 elif n == 2:
 return 1
 return fib(n-1) + fib(n-2)

def fib(n):
 curr, next = 0, 1
 while n > 0:
 curr, next = next, curr + next
 n -= 1
 return curr

ϴ(𝜙n)
exponential runtime

(very bad!)

ϴ(n)

Complexity

• So, there are some problems that computers can’t solve
• For all the problems that can be solved, can we solve

them efficiently? This is a much more practical concern

def fib(n):
 if n == 1:
 return 0
 elif n == 2:
 return 1
 return fib(n-1) + fib(n-2)

def fib(n):
 curr, next = 0, 1
 while n > 0:
 curr, next = next, curr + next
 n -= 1
 return curr

ϴ(𝜙n)
exponential runtime

(very bad!)

ϴ(n)
linear runtime

Complexity

• So, there are some problems that computers can’t solve
• For all the problems that can be solved, can we solve

them efficiently? This is a much more practical concern

def fib(n):
 if n == 1:
 return 0
 elif n == 2:
 return 1
 return fib(n-1) + fib(n-2)

def fib(n):
 curr, next = 0, 1
 while n > 0:
 curr, next = next, curr + next
 n -= 1
 return curr

ϴ(𝜙n)
exponential runtime

(very bad!)

ϴ(n)
linear runtime
(much better!)

Orders of Growth

Orders of Growth

Orders of Growth

ϴ(1)

Orders of Growth

ϴ(logn)
ϴ(1)

Orders of Growth

ϴ(n)
ϴ(logn)
ϴ(1)

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

ϴ(n3)
…

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

ϴ(n3)
…

ϴ(1.1n)

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

ϴ(n3)
…

ϴ(1.1n)
ϴ(𝜙n)

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

ϴ(n3)
…

ϴ(1.1n)
ϴ(𝜙n)
ϴ(2n)
…

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

ϴ(n3)
…

ϴ(1.1n)
ϴ(𝜙n)
ϴ(2n)
…

iterative
Fibonacci

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

ϴ(n3)
…

ϴ(1.1n)
ϴ(𝜙n)
ϴ(2n)
…

iterative
Fibonacci

recursive
Fibonacci

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

ϴ(n3)
…

ϴ(1.1n)
ϴ(𝜙n)
ϴ(2n)
…

iterative
Fibonacci

recursive
Fibonacci

Polynomial	runtime

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

ϴ(n3)
…

ϴ(1.1n)
ϴ(𝜙n)
ϴ(2n)
…

iterative
Fibonacci

recursive
Fibonacci

Polynomial	runtime
Generally	pretty	fast

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

ϴ(n3)
…

ϴ(1.1n)
ϴ(𝜙n)
ϴ(2n)
…

iterative
Fibonacci

recursive
Fibonacci

Polynomial	runtime
Generally	pretty	fast

Considered	good

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

ϴ(n3)
…

ϴ(1.1n)
ϴ(𝜙n)
ϴ(2n)
…

iterative
Fibonacci

recursive
Fibonacci

Polynomial	runtime
Generally	pretty	fast

Considered	good

Exponential	runtime	or	worse

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

ϴ(n3)
…

ϴ(1.1n)
ϴ(𝜙n)
ϴ(2n)
…

iterative
Fibonacci

recursive
Fibonacci

Polynomial	runtime
Generally	pretty	fast

Considered	good

Exponential	runtime	or	worse
Gets	slow	quickly	as	n	grows

Orders of Growth

ϴ(n2)
ϴ(n)

ϴ(logn)
ϴ(1)

ϴ(n3)
…

ϴ(1.1n)
ϴ(𝜙n)
ϴ(2n)
…

iterative
Fibonacci

recursive
Fibonacci

Polynomial	runtime
Generally	pretty	fast

Considered	good

Exponential	runtime	or	worse
Gets	slow	quickly	as	n	grows

Intractable

Complexity Classes

Complexity Classes

• We often make the distinction between polynomial runtime
and exponential runtime, and ignore the differences
between different polynomials or different exponentials

Complexity Classes

• We often make the distinction between polynomial runtime
and exponential runtime, and ignore the differences
between different polynomials or different exponentials

• Roughly speaking, solutions with polynomial runtime are
usually “good enough”, whereas exponential runtime is
usually too bad to be useful

Complexity Classes

• We often make the distinction between polynomial runtime
and exponential runtime, and ignore the differences
between different polynomials or different exponentials

• Roughly speaking, solutions with polynomial runtime are
usually “good enough”, whereas exponential runtime is
usually too bad to be useful

• Practically, there is certainly a difference between
solutions with, e.g., ϴ(n) runtime and ϴ(n3) runtime

Complexity Classes

• We often make the distinction between polynomial runtime
and exponential runtime, and ignore the differences
between different polynomials or different exponentials

• Roughly speaking, solutions with polynomial runtime are
usually “good enough”, whereas exponential runtime is
usually too bad to be useful

• Practically, there is certainly a difference between
solutions with, e.g., ϴ(n) runtime and ϴ(n3) runtime
• But this is a smaller difference than solutions with,

e.g., ϴ(n3) runtime and ϴ(2n) runtime

Complexity Classes

• We often make the distinction between polynomial runtime
and exponential runtime, and ignore the differences
between different polynomials or different exponentials

• Roughly speaking, solutions with polynomial runtime are
usually “good enough”, whereas exponential runtime is
usually too bad to be useful

• Practically, there is certainly a difference between
solutions with, e.g., ϴ(n) runtime and ϴ(n3) runtime
• But this is a smaller difference than solutions with,

e.g., ϴ(n3) runtime and ϴ(2n) runtime
• It is also generally easier to reduce polynomials than

to reduce exponential runtime to polynomial runtime

Complexity Classes

• We often make the distinction between polynomial runtime
and exponential runtime, and ignore the differences
between different polynomials or different exponentials

• Roughly speaking, solutions with polynomial runtime are
usually “good enough”, whereas exponential runtime is
usually too bad to be useful

• Practically, there is certainly a difference between
solutions with, e.g., ϴ(n) runtime and ϴ(n3) runtime
• But this is a smaller difference than solutions with,

e.g., ϴ(n3) runtime and ϴ(2n) runtime
• It is also generally easier to reduce polynomials than

to reduce exponential runtime to polynomial runtime
• Ignoring the smaller differences allows us to develop

more rigorous theory involving complexity classes

Disclaimer

Disclaimer

• The rest of this lecture is less formal, because we have
to skip some of the more complicated details

Disclaimer

• The rest of this lecture is less formal, because we have
to skip some of the more complicated details

• So, don’t quote what I say or write, because I will get
in trouble

Disclaimer

• The rest of this lecture is less formal, because we have
to skip some of the more complicated details

• So, don’t quote what I say or write, because I will get
in trouble
• Instead, just try to understand the main ideas

Disclaimer

• The rest of this lecture is less formal, because we have
to skip some of the more complicated details

• So, don’t quote what I say or write, because I will get
in trouble
• Instead, just try to understand the main ideas

• If you want all of the details, I refer you to:

Disclaimer

• The rest of this lecture is less formal, because we have
to skip some of the more complicated details

• So, don’t quote what I say or write, because I will get
in trouble
• Instead, just try to understand the main ideas

• If you want all of the details, I refer you to:
• CS 170 (Efficient Algorithms and Intractable Problems)

Disclaimer

• The rest of this lecture is less formal, because we have
to skip some of the more complicated details

• So, don’t quote what I say or write, because I will get
in trouble
• Instead, just try to understand the main ideas

• If you want all of the details, I refer you to:
• CS 170 (Efficient Algorithms and Intractable Problems)
• CS 172 (Computability and Complexity)

Disclaimer

• The rest of this lecture is less formal, because we have
to skip some of the more complicated details

• So, don’t quote what I say or write, because I will get
in trouble
• Instead, just try to understand the main ideas

• If you want all of the details, I refer you to:
• CS 170 (Efficient Algorithms and Intractable Problems)
• CS 172 (Computability and Complexity)
• Or the equivalent courses at other institutions

Complexity Classes

Complexity Classes

• The two most famous complexity classes are called P and NP

Complexity Classes

• The two most famous complexity classes are called P and NP

• The class P contains problems that have solutions with
polynomial runtime

Complexity Classes

• The two most famous complexity classes are called P and NP

• The class P contains problems that have solutions with
polynomial runtime
• Fibonacci is in this class, since the iterative

solution has linear runtime

Complexity Classes

• The two most famous complexity classes are called P and NP

• The class P contains problems that have solutions with
polynomial runtime
• Fibonacci is in this class, since the iterative

solution has linear runtime
• Most problems we have seen so far are in P

Complexity Classes

• The two most famous complexity classes are called P and NP

• The class P contains problems that have solutions with
polynomial runtime
• Fibonacci is in this class, since the iterative

solution has linear runtime
• Most problems we have seen so far are in P

• The class NP contains problems where the answer can be
verified in polynomial time

Complexity Classes

• The two most famous complexity classes are called P and NP

• The class P contains problems that have solutions with
polynomial runtime
• Fibonacci is in this class, since the iterative

solution has linear runtime
• Most problems we have seen so far are in P

• The class NP contains problems where the answer can be
verified in polynomial time
• If I tell you: “The nth Fibonacci number is k”

Complexity Classes

• The two most famous complexity classes are called P and NP

• The class P contains problems that have solutions with
polynomial runtime
• Fibonacci is in this class, since the iterative

solution has linear runtime
• Most problems we have seen so far are in P

• The class NP contains problems where the answer can be
verified in polynomial time
• If I tell you: “The nth Fibonacci number is k”
• Can you verify that this is correct in polynomial time?

Complexity Classes

• The two most famous complexity classes are called P and NP

• The class P contains problems that have solutions with
polynomial runtime
• Fibonacci is in this class, since the iterative

solution has linear runtime
• Most problems we have seen so far are in P

• The class NP contains problems where the answer can be
verified in polynomial time
• If I tell you: “The nth Fibonacci number is k”
• Can you verify that this is correct in polynomial time?

• In this example, the answer is yes, because you can just
run the iterative solution to check, so Fibonacci is also
in NP

Example: Hamiltonian Path

Example: Hamiltonian Path

• Given a graph, is there a path through the graph that
visits each vertex exactly once?

Example: Hamiltonian Path

• Given a graph, is there a path through the graph that
visits each vertex exactly once?

Example: Hamiltonian Path

• Given a graph, is there a path through the graph that
visits each vertex exactly once?

(demo)

Example: Hamiltonian Path

• Given a graph, is there a path through the graph that
visits each vertex exactly once?

• Is this problem in NP? Yes!

(demo)

Example: Hamiltonian Path

• Given a graph, is there a path through the graph that
visits each vertex exactly once?

• Is this problem in NP? Yes!
• If I am given a graph and a proposed 

Hamiltonian path, I can easily verify 
whether or not the path is correct

(demo)

Example: Hamiltonian Path

• Given a graph, is there a path through the graph that
visits each vertex exactly once?

• Is this problem in NP? Yes!
• If I am given a graph and a proposed 

Hamiltonian path, I can easily verify 
whether or not the path is correct

• I just have to trace the path through 
the graph and make sure it visits every vertex

(demo)

Example: Hamiltonian Path

• Given a graph, is there a path through the graph that
visits each vertex exactly once?

• Is this problem in NP? Yes!
• If I am given a graph and a proposed 

Hamiltonian path, I can easily verify 
whether or not the path is correct

• I just have to trace the path through 
the graph and make sure it visits every vertex

• Is this problem in P? We don’t know

(demo)

Example: Hamiltonian Path

• Given a graph, is there a path through the graph that
visits each vertex exactly once?

• Is this problem in NP? Yes!
• If I am given a graph and a proposed 

Hamiltonian path, I can easily verify 
whether or not the path is correct

• I just have to trace the path through 
the graph and make sure it visits every vertex

• Is this problem in P? We don’t know
• We have seen two exponential runtime solutions for this

problem, one in Logic and a similar one in Python

(demo)

Example: Hamiltonian Path

• Given a graph, is there a path through the graph that
visits each vertex exactly once?

• Is this problem in NP? Yes!
• If I am given a graph and a proposed 

Hamiltonian path, I can easily verify 
whether or not the path is correct

• I just have to trace the path through 
the graph and make sure it visits every vertex

• Is this problem in P? We don’t know
• We have seen two exponential runtime solutions for this

problem, one in Logic and a similar one in Python
• But there could be another solution with polynomial

runtime, we can’t be sure

(demo)

P and NP

P and NP

• Is every problem in P also in NP? Yes!

P and NP

• Is every problem in P also in NP? Yes!
• If a problem is in P, then it has a solution with

polynomial runtime

P and NP

• Is every problem in P also in NP? Yes!
• If a problem is in P, then it has a solution with

polynomial runtime
• So if I want to verify an answer for an instance of the

problem, I can just run the solution and compare

P and NP

• Is every problem in P also in NP? Yes!
• If a problem is in P, then it has a solution with

polynomial runtime
• So if I want to verify an answer for an instance of the

problem, I can just run the solution and compare
• This takes polynomial time, so the problem is in NP

P and NP

• Is every problem in P also in NP? Yes!
• If a problem is in P, then it has a solution with

polynomial runtime
• So if I want to verify an answer for an instance of the

problem, I can just run the solution and compare
• This takes polynomial time, so the problem is in NP

• Is every problem in NP also in P?

P and NP

• Is every problem in P also in NP? Yes!
• If a problem is in P, then it has a solution with

polynomial runtime
• So if I want to verify an answer for an instance of the

problem, I can just run the solution and compare
• This takes polynomial time, so the problem is in NP

• Is every problem in NP also in P?
• In other words, if I can verify an answer for a problem

in polynomial time, can I also compute that answer
myself in polynomial time?

P and NP

• Is every problem in P also in NP? Yes!
• If a problem is in P, then it has a solution with

polynomial runtime
• So if I want to verify an answer for an instance of the

problem, I can just run the solution and compare
• This takes polynomial time, so the problem is in NP

• Is every problem in NP also in P?
• In other words, if I can verify an answer for a problem

in polynomial time, can I also compute that answer
myself in polynomial time?

• No one knows

P and NP

• Is every problem in P also in NP? Yes!
• If a problem is in P, then it has a solution with

polynomial runtime
• So if I want to verify an answer for an instance of the

problem, I can just run the solution and compare
• This takes polynomial time, so the problem is in NP

• Is every problem in NP also in P?
• In other words, if I can verify an answer for a problem

in polynomial time, can I also compute that answer
myself in polynomial time?

• No one knows

• But most people think it’s unlikely

P = NP (?)

P = NP (?)

• So, we know that P is a subset of NP, but we still don’t
know whether or not they are equal

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://www.quora.com/If-I-just-proved-that-P-NP-how-do-I-start-taking-over-the-world

P = NP (?)

• So, we know that P is a subset of NP, but we still don’t
know whether or not they are equal

• Most people think they’re not equal, because you could do a
lot of crazy things if they are

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://www.quora.com/If-I-just-proved-that-P-NP-how-do-I-start-taking-over-the-world

P = NP (?)

• So, we know that P is a subset of NP, but we still don’t
know whether or not they are equal

• Most people think they’re not equal, because you could do a
lot of crazy things if they are
• Automatically generate mathematical proofs

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://www.quora.com/If-I-just-proved-that-P-NP-how-do-I-start-taking-over-the-world

P = NP (?)

• So, we know that P is a subset of NP, but we still don’t
know whether or not they are equal

• Most people think they’re not equal, because you could do a
lot of crazy things if they are
• Automatically generate mathematical proofs
• Optimally play Candy Crush, Pokémon, and Super Mario Bros

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://www.quora.com/If-I-just-proved-that-P-NP-how-do-I-start-taking-over-the-world

P = NP (?)

• So, we know that P is a subset of NP, but we still don’t
know whether or not they are equal

• Most people think they’re not equal, because you could do a
lot of crazy things if they are
• Automatically generate mathematical proofs
• Optimally play Candy Crush, Pokémon, and Super Mario Bros
• Break many types of security encryption

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://www.quora.com/If-I-just-proved-that-P-NP-how-do-I-start-taking-over-the-world

P = NP (?)

• So, we know that P is a subset of NP, but we still don’t
know whether or not they are equal

• Most people think they’re not equal, because you could do a
lot of crazy things if they are
• Automatically generate mathematical proofs
• Optimally play Candy Crush, Pokémon, and Super Mario Bros
• Break many types of security encryption

• Verifying a password is very easy, just type it in and
see if it works

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://www.quora.com/If-I-just-proved-that-P-NP-how-do-I-start-taking-over-the-world

P = NP (?)

• So, we know that P is a subset of NP, but we still don’t
know whether or not they are equal

• Most people think they’re not equal, because you could do a
lot of crazy things if they are
• Automatically generate mathematical proofs
• Optimally play Candy Crush, Pokémon, and Super Mario Bros
• Break many types of security encryption

• Verifying a password is very easy, just type it in and
see if it works

• Imagine if figuring out a password was just as easy

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://www.quora.com/If-I-just-proved-that-P-NP-how-do-I-start-taking-over-the-world

P = NP (?)

• So, we know that P is a subset of NP, but we still don’t
know whether or not they are equal

• Most people think they’re not equal, because you could do a
lot of crazy things if they are
• Automatically generate mathematical proofs
• Optimally play Candy Crush, Pokémon, and Super Mario Bros
• Break many types of security encryption

• Verifying a password is very easy, just type it in and
see if it works

• Imagine if figuring out a password was just as easy
• The P = NP problem is one of the seven Millennium prizes

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://www.quora.com/If-I-just-proved-that-P-NP-how-do-I-start-taking-over-the-world

P = NP (?)

• So, we know that P is a subset of NP, but we still don’t
know whether or not they are equal

• Most people think they’re not equal, because you could do a
lot of crazy things if they are
• Automatically generate mathematical proofs
• Optimally play Candy Crush, Pokémon, and Super Mario Bros
• Break many types of security encryption

• Verifying a password is very easy, just type it in and
see if it works

• Imagine if figuring out a password was just as easy
• The P = NP problem is one of the seven Millennium prizes
• If I just proved that P = NP, how do I take over the world?

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://www.quora.com/If-I-just-proved-that-P-NP-how-do-I-start-taking-over-the-world

Summary

Summary

• Computability theory studies what problems computers can
and cannot solve

Summary

• Computability theory studies what problems computers can
and cannot solve
• The halting problem cannot be solved by a computer

Summary

• Computability theory studies what problems computers can
and cannot solve
• The halting problem cannot be solved by a computer
• Reducing other problems to the halting problem shows

that they cannot be solved either

Summary

• Computability theory studies what problems computers can
and cannot solve
• The halting problem cannot be solved by a computer
• Reducing other problems to the halting problem shows

that they cannot be solved either
• This is not really a practical concern for most people

Summary

• Computability theory studies what problems computers can
and cannot solve
• The halting problem cannot be solved by a computer
• Reducing other problems to the halting problem shows

that they cannot be solved either
• This is not really a practical concern for most people

• Complexity theory studies what problems computers can and
cannot solve efficiently

Summary

• Computability theory studies what problems computers can
and cannot solve
• The halting problem cannot be solved by a computer
• Reducing other problems to the halting problem shows

that they cannot be solved either
• This is not really a practical concern for most people

• Complexity theory studies what problems computers can and
cannot solve efficiently
• This is a practical concern for basically everyone

Summary

• Computability theory studies what problems computers can
and cannot solve
• The halting problem cannot be solved by a computer
• Reducing other problems to the halting problem shows

that they cannot be solved either
• This is not really a practical concern for most people

• Complexity theory studies what problems computers can and
cannot solve efficiently
• This is a practical concern for basically everyone
• There are still many unanswered questions, for example,

whether or not P = NP

Summary

• Computability theory studies what problems computers can
and cannot solve
• The halting problem cannot be solved by a computer
• Reducing other problems to the halting problem shows

that they cannot be solved either
• This is not really a practical concern for most people

• Complexity theory studies what problems computers can and
cannot solve efficiently
• This is a practical concern for basically everyone
• There are still many unanswered questions, for example,

whether or not P = NP
• CS 170 and CS 172 go into more detail on this material

