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Roadmap

• This week (Applications), the 
goals are:
• To go beyond CS 61A and see 

examples of what comes next
• To wrap up CS 61A!
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Theoretical Computer Science

• The subfield of computer science that focuses on more 
abstract and mathematical aspects of computing

• A very broad and diverse subfield that interacts with 
many other fields in and outside of computer science

• A big part of this subfield is theory of computation
• We will look at two topics in theory of computation:

• Computability theory

• “Can my computer solve this problem?”
• Complexity theory

• “Can my computer solve this problem efficiently?”
• If today is interesting, consider CS 170 and CS 172
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The Halting Problem

• Can computers solve any problem we give them?
• If not, what can’t they do?

• One useful problem we would like to solve, called the 
halting problem, is to check if a function runs into an 
infinite loop, since we would usually like to avoid this
• Let’s focus on functions that take in one argument

• Can we write a function halts that takes in a function 
func and an input x and returns whether or not func halts 
when given input x?

def whoops(x):
    while True:
        pass

def okay(x):
    return x + 1

def whookay(x):
    while x != 0:
        x -= 2
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The Halting Problem

• It turns out that we cannot write halts! There is no 
implementation that accomplishes what we want

• The halting problem is called undecidable, which 
basically means that we can’t solve it using a computer

• We can prove that we cannot write halts through a proof 
by contradiction:

1. Assume that we can write halts

2. Show that this leads to a logical contradiction

3. Conclude that our assumption must be false

def halts(func, x):
    # ???
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2. Show that this leads to a logical contradiction

• What happens when we call very_bad(very_bad)?
• If very_bad(very_bad) halts, then loop forever
• If very_bad(very_bad) does not halt, then halt

• So... does very_bad(very_bad) halt or not?
• It must either halt or not halt, there exists no 

third option

def very_bad(func):
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            pass
    else:
        return  # halt
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The Halting Problem

2. Show that this leads to a logical contradiction
• If very_bad(very_bad) halts,

• Then very_bad(very_bad) does not halt
• If very_bad(very_bad) does not halt,

• Then very_bad(very_bad) halts
• This is a contradiction! It simply isn’t possible

3. Conclude that our assumption must be false
• very_bad is valid Python, there is nothing wrong there
• So it must be the case that our assumption is wrong
• Therefore, there is no way to write halts, and the 

halting problem must be undecidable
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Decidability

• Roughly speaking, the decidability of a problem is whether a 
computer can solve the particular problem
• The halting problem is undecidable, as we have shown
• All other problems we have studied are decidable, because we 

have written code for all of them!

• There are other problems that are undecidable, and there are 
various ways to prove their undecidability

• One way is proof by contradiction, which we have seen
• Another way is to reduce the problem to the halting problem

• In a reduction, we find a way to solve the halting problem using 
the solution to another problem
• “If I can solve this problem, then I can also solve the halting 

problem” implies:
• “I can’t solve this problem, because I can’t solve the 

halting problem.”
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Decidability

• If f1(y) == f2(y) for all inputs y, then f1(y) == 0 for 
all inputs y
• This implies that func(x) halts, because otherwise 

f1(y) is undefined for all inputs y
• So this successfully solves the halting problem!

• “I can’t solve computes_same, because I can’t solve the 
halting problem.”

def halts(func, x):
    def f1(y):
        func(x)
        return 0
    def f2(y):
        return 0
    return computes_same(f1, f2)
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• So, there are some problems that computers can’t solve
• For all the problems that can be solved, can we solve 

them efficiently? This is a much more practical concern

def fib(n):
    if n == 1:
        return 0
    elif n == 2:
        return 1
    return fib(n-1) + fib(n-2)

def fib(n):
    curr, next = 0, 1
    while n > 0:
        curr, next = next, curr + next
        n -= 1
    return curr

ϴ(𝜙n)
exponential runtime

(very bad!)

ϴ(n)
linear runtime
(much better!)
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Polynomial	runtime
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Exponential	runtime	or	worse
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• We often make the distinction between polynomial runtime 
and exponential runtime, and ignore the differences 
between different polynomials or different exponentials

• Roughly speaking, solutions with polynomial runtime are 
usually “good enough”, whereas exponential runtime is 
usually too bad to be useful

• Practically, there is certainly a difference between 
solutions with, e.g., ϴ(n) runtime and ϴ(n3) runtime
• But this is a smaller difference than solutions with, 

e.g., ϴ(n3) runtime and ϴ(2n) runtime
• It is also generally easier to reduce polynomials than 

to reduce exponential runtime to polynomial runtime
• Ignoring the smaller differences allows us to develop 

more rigorous theory involving complexity classes
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Disclaimer

• The rest of this lecture is less formal, because we have 
to skip some of the more complicated details

• So, don’t quote what I say or write, because I will get 
in trouble
• Instead, just try to understand the main ideas

• If you want all of the details, I refer you to:
• CS 170 (Efficient Algorithms and Intractable Problems)
• CS 172 (Computability and Complexity)
• Or the equivalent courses at other institutions
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Complexity Classes

• The two most famous complexity classes are called P and NP

• The class P contains problems that have solutions with 
polynomial runtime
• Fibonacci is in this class, since the iterative 

solution has linear runtime
• Most problems we have seen so far are in P

• The class NP contains problems where the answer can be 
verified in polynomial time
• If I tell you: “The nth Fibonacci number is k”
• Can you verify that this is correct in polynomial time?

• In this example, the answer is yes, because you can just 
run the iterative solution to check, so Fibonacci is also 
in NP
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Example: Hamiltonian Path

• Given a graph, is there a path through the graph that 
visits each vertex exactly once?

• Is this problem in NP? Yes!
• If I am given a graph and a proposed 

Hamiltonian path, I can easily verify 
whether or not the path is correct

• I just have to trace the path through 
the graph and make sure it visits every vertex

• Is this problem in P? We don’t know
• We have seen two exponential runtime solutions for this 

problem, one in Logic and a similar one in Python
• But there could be another solution with polynomial 

runtime, we can’t be sure

(demo)
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• Is every problem in P also in NP? Yes!
• If a problem is in P, then it has a solution with 

polynomial runtime
• So if I want to verify an answer for an instance of the 

problem, I can just run the solution and compare
• This takes polynomial time, so the problem is in NP

• Is every problem in NP also in P?
• In other words, if I can verify an answer for a problem 

in polynomial time, can I also compute that answer 
myself in polynomial time?

• No one knows

• But most people think it’s unlikely
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• So, we know that P is a subset of NP, but we still don’t 
know whether or not they are equal

• Most people think they’re not equal, because you could do a 
lot of crazy things if they are
• Automatically generate mathematical proofs
• Optimally play Candy Crush, Pokémon, and Super Mario Bros
• Break many types of security encryption

• Verifying a password is very easy, just type it in and 
see if it works

• Imagine if figuring out a password was just as easy
• The P = NP problem is one of the seven Millennium prizes
• If I just proved that P = NP, how do I take over the world?

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://www.quora.com/If-I-just-proved-that-P-NP-how-do-I-start-taking-over-the-world
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Summary

• Computability theory studies what problems computers can 
and cannot solve
• The halting problem cannot be solved by a computer
• Reducing other problems to the halting problem shows 

that they cannot be solved either
• This is not really a practical concern for most people

• Complexity theory studies what problems computers can and 
cannot solve efficiently
• This is a practical concern for basically everyone
• There are still many unanswered questions, for example, 

whether or not P = NP
• CS 170 and CS 172 go into more detail on this material


