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• Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
• Scheme Recursive Art submissions due today (8/9)!
• Potluck II tomorrow (8/10)! 5-8pm in Wozniak Lounge
• Homework 10 is due today (8/9)

• AutoStyle EC portion due 8/10, last part due 8/11
• Homework 11 and 12 will be due 8/10 and 8/12

• Last two of the three extra credit surveys
• Vote for your favorite Recursive Art submissions!

• Check your grades! Details on Piazza, regrades close 8/10
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Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Applications), the goals are:
• To go beyond CS 61A and see examples 

of what comes next 
• To wrap up CS 61A!
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• A subfield of computer science with two main goals:

• Allow intended use of computer systems

• Prevent unwanted use that may cause harm

• Why should you care?

• The Internet has a lot of information about you...

• Today, we'll look at two problems:

• Cryptography: secure communication over insecure 
communication channels

• Injection Attacks

Computer Security
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Today's Special Guests!

Alice Bob

The Adversary
(Eve or Mallory)
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• One of the first attempts to encrypt a message

• Was used by Roman dictator Julius Caesar

• Alice and Bob agree on a secret number (key) between 0 and 
25 to shift the alphabet

• For example, if the number is 2 then 'A' becomes 'C', 
'B' becomes 'D', ..., 'Y' becomes 'A', 'Z' becomes 'B'

The Caesar Cipher

http://www.cryptoclub.org/tools/caesar_cipher.php

(demo)
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• Observation: There are only 26 possible keys

• Observation: Computers are fast

• Observation: Letters don't appear in English with the 
exact same frequency

• For example, 'E' appears more often than 'Z'

vgg ocz rjmgy'n v novbz , 
viy vgg ocz hzi viy rjhzi hzmzgt kgvtzmn : 
oczt cvqz oczdm zsdon viy oczdm ziomvixzn ; 
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The Enigma Machine

• Used by the German military in World War II

• First broken by Polish mathematicians in 1932

• Information gained by the Allied forces is estimated to 
have shortened fighting by two years

• Implemented a progressive substitution cipher (e.g. 
different shift for each letter of the message)
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• This will require a bit of math, but the detailed steps 
aren't particularly important

• From here onward, we'll represent a message with a number 
m, rather than a string of characters

• Main idea: It is feasible to find three large numbers e, 
d, and n such that (me)d = m (mod n)
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• RSA is an example of public-key cryptography

• The public key is known to everyone and is used to 
encrypt messages for the user

• The private key is only known by the user and is the 
only way to decrypt a message

• This is also known as asymmetric cryptography: the 
message sender and recipient have two different keys

• Main idea: It is feasible to find three large numbers e, 
d, and n such that (me)d = m (mod n)

• Public key: e and n ("modulus")

• Private key: d
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RSA Encryption and Decryption

• Suppose that Bob wants to send a message m to Alice

• He can encrypt a message by computing c = me (mod n)

• Everyone knows that Alice's public key is e and n

• She can decrypt his message by computing cd = (me)d = m 
(mod n)

• Only Alice knows her private key d
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Breaking RSA

• Eve needs to compute d to decrypt the message

• e, d, and n aren't just three arbitrarily chosen numbers!

• n = pq, where p and q are two very large primes (~21024)

• For RSA encryption and decryption to work, ed = 1 (mod 
(p-1)*(q-1)) (Euler's totient theorem)

• As far as we know, computing d means that we have to

1.Factor n into p and q

2.Solve ed = 1 (mod (p-1)*(q-1)) for d

• It turns out that Step 2 is easy and Step 1 is hard!

• The security of RSA relies on factoring being difficult

https://en.wikipedia.org/wiki/Euler%27s_theorem
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Factoring is (Maybe) Hard

• Quick! Factor 561!

• There is no known efficient factoring algorithm

• Researchers spent 2007-2009 on factoring a 768-bit modulus 
(232 digits)

• It took the equivalent of almost 2000 years of computing

• Factoring a 1024-bit RSA modulus would be 1000x harder, 
but could happen in the next decade (2019 is coming up!)
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Factoring Complexity

• When people talk about factoring complexity, they 
typically describe runtime with respect to the bits that 
it takes to represent the number n (i.e. log2n)

• Factoring is in NP: the answer can be verified by 
multiplying, which takes polynomial time

• We don't know if factoring is in P: the best algorithms 
for factoring are better than exponential but worse than 
polynomial

• Quantum computers can factor large numbers in polynomial 
time with Shor's algorithm

• But their most recent breakthrough was factoring 21, 
so...
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Applications of RSA

• For now (and for many years to come), RSA is secure

• Many protocols rely on RSA today

• SSH (how to connect securely to the lab computers)

• SSL/TLS (the "S" in "HTTPS", how to connect securely to 
Facebook, etc.)
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Compromising Web Servers

• What could you do if you controlled one of Facebook's 
servers?

• Steal sensitive data (e.g. data from many users)

• Change server data (e.g. affect users)

• Gateway to enabling attacks on users

• Impersonation (of users to servers, or vice versa)
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hundreds of proposed fixes and solutions

• General attack structure:

• Attacker user provides some bad input

• Web server does not check input format

• Enables attacker to execute arbitrary code on the server
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Summary

• Computer security studies how we can allow for the 
intended use of computer systems while preventing unwanted 
use that may cause harm

• Cryptography studies how we can communicate with others 
securely

• As programmers, we must be mindful of security best 
practices when developing applications

• Even then, it might not be enough!

• CS 161 (Computer Security) goes into much more depth

• CS 261 and CS 276 are the graduate-level security and 
cryptography classes


