Lecture 28: Computer Security

Brian Hou
August 9, 2016

Announcements

Announcements

- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle

Announcements

- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
- Scheme Recursive Art submissions due today (8/9)!

Announcements

- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
- Scheme Recursive Art submissions due today (8/9)!
- Potluck II tomorrow (8/10)! 5-8pm in Wozniak Lounge

Announcements

- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
- Scheme Recursive Art submissions due today (8/9)!
- Potluck II tomorrow (8/10)! 5-8pm in Wozniak Lounge
- Homework 10 is due today (8/9)

Announcements

- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
- Scheme Recursive Art submissions due today (8/9)!
- Potluck II tomorrow (8/10)! 5-8pm in Wozniak Lounge
- Homework 10 is due today (8/9)
- AutoStyle EC portion due 8/10, last part due 8/11

Announcements

- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
- Scheme Recursive Art submissions due today (8/9)!
- Potluck II tomorrow (8/10)! 5-8pm in Wozniak Lounge
- Homework 10 is due today (8/9)
- AutoStyle EC portion due 8/10, last part due 8/11
- Homework 11 and 12 will be due 8/10 and 8/12

Announcements

- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
- Scheme Recursive Art submissions due today (8/9)!
- Potluck II tomorrow (8/10)! 5-8pm in Wozniak Lounge
- Homework 10 is due today (8/9)
- AutoStyle EC portion due 8/10, last part due 8/11
- Homework 11 and 12 will be due 8/10 and 8/12
- Last two of the three extra credit surveys

Announcements

- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
- Scheme Recursive Art submissions due today (8/9)!
- Potluck II tomorrow (8/10)! 5-8pm in Wozniak Lounge
- Homework 10 is due today (8/9)
- AutoStyle EC portion due 8/10, last part due 8/11
- Homework 11 and 12 will be due 8/10 and 8/12
- Last two of the three extra credit surveys
- Vote for your favorite Recursive Art submissions!

Announcements

- Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
- Scheme Recursive Art submissions due today (8/9)!
- Potluck II tomorrow (8/10)! 5-8pm in Wozniak Lounge
- Homework 10 is due today (8/9)
- AutoStyle EC portion due 8/10, last part due 8/11
- Homework 11 and 12 will be due 8/10 and 8/12
- Last two of the three extra credit surveys
- Vote for your favorite Recursive Art submissions!
- Check your grades! Details on Piazza, regrades close 8/10

Roadmap

Introduction

Functions
Data
Mutability
Objects
Interpretation
Paradigms
Applications

Roadmap

Introduction

Functions
Data

- This week (Applications), the goals are:

Mutability
Objects
Interpretation
Paradigms
Applications

Roadmap

Introduction

Functions

Data

Mutability

- This week (Applications), the goals are:
- To go beyond CS 61A and see examples of what comes next

Objects
Interpretation
Paradigms
Applications

Roadmap

Introduction

Functions

Data

Mutability
Objects
Interpretation
Paradigms
Applications

Computer Security

Computer Security

Computer Security

- A subfield of computer science with two main goals:

Computer Security

- A subfield of computer science with two main goals:
- Allow intended use of computer systems

Computer Security

- A subfield of computer science with two main goals:
- Allow intended use of computer systems
- Prevent unwanted use that may cause harm

Computer Security

- A subfield of computer science with two main goals:
- Allow intended use of computer systems
- Prevent unwanted use that may cause harm
-Why should you care?

Computer Security

- A subfield of computer science with two main goals:
- Allow intended use of computer systems
- Prevent unwanted use that may cause harm
- Why should you care?
- The Internet has a lot of information about you...

Computer Security

- A subfield of computer science with two main goals:
- Allow intended use of computer systems
- Prevent unwanted use that may cause harm
- Why should you care?
- The Internet has a lot of information about you...
- Today, we'll look at two problems:

Computer Security

- A subfield of computer science with two main goals:
- Allow intended use of computer systems
- Prevent unwanted use that may cause harm
- Why should you care?
- The Internet has a lot of information about you...
- Today, we'll look at two problems:
- Cryptography: secure communication over insecure communication channels

Computer Security

- A subfield of computer science with two main goals:
- Allow intended use of computer systems
- Prevent unwanted use that may cause harm
- Why should you care?
- The Internet has a lot of information about you...
- Today, we'll look at two problems:
- Cryptography: secure communication over insecure communication channels
- Injection Attacks

Today's Special Guests!

Today's Special Guests!

Alice

Today's Special Guests!

Alice

Today's Special Guests!

Alice

Bob

The Adversary

Today's Special Guests!

Alice

The Adversary
(Eve or Mallory)

Cryptography

Cryptography

Cryptography

- Three main goals: confidentiality, integrity, authenticity

Cryptography

- Three main goals: confidentiality, integrity, authenticity
- Today, we'll focus on confidentiality

Cryptography

- Three main goals: confidentiality, integrity, authenticity
- Today, we'll focus on confidentiality
- Confidentiality: prevent adversaries from reading private communications

Cryptography

- Three main goals: confidentiality, integrity, authenticity
- Today, we'll focus on confidentiality
- Confidentiality: prevent adversaries from reading private communications
- Can Alice and Bob communicate in a way that even an eavesdropper Eve can't understand what they're saying?

Cryptography

- Three main goals: confidentiality, integrity, authenticity
- Today, we'll focus on confidentiality
- Confidentiality: prevent adversaries from reading private communications
- Can Alice and Bob communicate in a way that even an eavesdropper Eve can't understand what they're saying?

The Caesar Cipher

The Caesar Cipher

- One of the first attempts to encrypt a message

The Caesar Cipher

- One of the first attempts to encrypt a message
- Was used by Roman dictator Julius Caesar

The Caesar Cipher

- One of the first attempts to encrypt a message
- Was used by Roman dictator Julius Caesar
- Alice and Bob agree on a secret number (key) between 0 and 25 to shift the alphabet

The Caesar Cipher

- One of the first attempts to encrypt a message
- Was used by Roman dictator Julius Caesar
- Alice and Bob agree on a secret number (key) between 0 and 25 to shift the alphabet
- For example, if the number is 2 then 'A' becomes ' C^{\prime}, 'B' becomes 'D', ...' 'Y' becomes 'A', 'Z' becomes 'B'

The Caesar Cipher

- One of the first attempts to encrypt a message
- Was used by Roman dictator Julius Caesar
- Alice and Bob agree on a secret number (key) between 0 and 25 to shift the alphabet
- For example, if the number is 2 then ' A ' becomes ' C ', 'B' becomes 'D', ...' 'Y' becomes 'A', 'Z' becomes 'B'

Breaking the Caesar Cipher

vgg ocz rjmgy'n v novbz ,
viy vgg ocz hzi viy rjhzi hzmzgt kgvtzmn : oczt cvqz oczdm zsdon viy oczdm ziomvixzn ; viy jiz hvi di cdn odhz kgvtn hvit kvmon ,

Breaking the Caesar Cipher

```
vgg ocz rjmgy'n v novbz ,
viy vgg ocz hzi viy rjhzi hzmzgt kgvtzmn :
oczt cvqz oczdm zsdon viy oczdm ziomvixzn ;
viy jiz hvi di cdn odhz kgvtn hvit kvmon ,
```

- Observation: There are only 26 possible keys

Breaking the Caesar Cipher

```
vgg ocz rjmgy'n v novbz ,
viy vgg ocz hzi viy rjhzi hzmzgt kgvtzmn :
oczt cvqz oczdm zsdon viy oczdm ziomvixzn ;
viy jiz hvi di cdn odhz kgvtn hvit kvmon ,
```

- Observation: There are only 26 possible keys
- Observation: Computers are fast

Breaking the Caesar Cipher

```
vgg ocz rjmgy'n v novbz ,
viy vgg ocz hzi viy rjhzi hzmzgt kgvtzmn :
oczt cvqz oczdm zsdon viy oczdm ziomvixzn ;
viy jiz hvi di cdn odhz kgvtn hvit kvmon ,
```

- Observation: There are only 26 possible keys
- Observation: Computers are fast
- Observation: Letters don't appear in English with the exact same frequency

Breaking the Caesar Cipher

```
vgg ocz rjmgy'n v novbz ,
viy vgg ocz hzi viy rjhzi hzmzgt kgvtzmn :
oczt cvqz oczdm zsdon viy oczdm ziomvixzn ;
viy jiz hvi di cdn odhz kgvtn hvit kvmon ,
```

- Observation: There are only 26 possible keys
- Observation: Computers are fast
- Observation: Letters don't appear in English with the exact same frequency
- For example, 'E' appears more often than 'Z'

Breaking the Caesar Cipher (demo)

```
vgg ocz rjmgy'n v novbz ,
viy vgg ocz hzi viy rjhzi hzmzgt kgvtzmn :
oczt cvqz oczdm zsdon viy oczdm ziomvixzn ;
viy jiz hvi di cdn odhz kgvtn hvit kvmon ,
```

- Observation: There are only 26 possible keys
- Observation: Computers are fast
- Observation: Letters don't appear in English with the exact same frequency
- For example, 'E' appears more often than 'Z'

The Enigma Machine

The Enigma Machine

The Enigma Machine

- Used by the German military in World War II

The Enigma Machine

- Used by the German military in World War II
- First broken by Polish mathematicians in 1932

The Enigma Machine

- Used by the German military in World War II
- First broken by Polish mathematicians in 1932
- Information gained by the Allied forces is estimated to have shortened fighting by two years

The Enigma Machine

- Used by the German military in World War II
- First broken by Polish mathematicians in 1932
- Information gained by the Allied forces is estimated to have shortened fighting by two years
- Implemented a progressive substitution cipher (e.g. different shift for each letter of the message)

Better Cryptography

Better Cryptography

- This will require a bit of math, but the detailed steps aren't particularly important

Better Cryptography

- This will require a bit of math, but the detailed steps aren't particularly important
- From here onward, we'll represent a message with a number m , rather than a string of characters

Better Cryptography

- This will require a bit of math, but the detailed steps aren't particularly important
- From here onward, we'll represent a message with a number m, rather than a string of characters
- Main idea: It is feasible to find three large numbers e, d , and n such that $\left(\mathrm{m}^{\mathrm{e}}\right)^{\mathrm{d}}=\mathrm{m}(\bmod \mathrm{n})$

The RSA Algorithm

The RSA Algorithm

- RSA is an example of public-key cryptography

The RSA Algorithm

- RSA is an example of public-key cryptography
- The public key is known to everyone and is used to encrypt messages for the user

The RSA Algorithm

- RSA is an example of public-key cryptography
- The public key is known to everyone and is used to encrypt messages for the user
- The private key is only known by the user and is the only way to decrypt a message

The RSA Algorithm

- RSA is an example of public-key cryptography
- The public key is known to everyone and is used to encrypt messages for the user
- The private key is only known by the user and is the only way to decrypt a message
- This is also known as asymmetric cryptography: the message sender and recipient have two different keys

The RSA Algorithm

- RSA is an example of public-key cryptography
- The public key is known to everyone and is used to encrypt messages for the user
- The private key is only known by the user and is the only way to decrypt a message
- This is also known as asymmetric cryptography: the message sender and recipient have two different keys
- Main idea: It is feasible to find three large numbers e, \mathbf{d}, and n such that $\left(\mathrm{m}^{\mathrm{e}}\right)^{\mathrm{d}}=\mathrm{m}(\bmod \mathrm{n})$

The RSA Algorithm

- RSA is an example of public-key cryptography
- The public key is known to everyone and is used to encrypt messages for the user
- The private key is only known by the user and is the only way to decrypt a message
- This is also known as asymmetric cryptography: the message sender and recipient have two different keys
- Main idea: It is feasible to find three large numbers e, \mathbf{d}, and \mathbf{n} such that $\left(\mathrm{m}^{\mathrm{e}}\right)^{\mathrm{d}}=\mathrm{m}(\bmod \mathrm{n})$
- Public key: e and n ("modulus")

The RSA Algorithm

- RSA is an example of public-key cryptography
- The public key is known to everyone and is used to encrypt messages for the user
- The private key is only known by the user and is the only way to decrypt a message
- This is also known as asymmetric cryptography: the message sender and recipient have two different keys
- Main idea: It is feasible to find three large numbers e, \mathbf{d}, and \mathbf{n} such that $\left(\mathrm{m}^{\mathrm{e}}\right)^{\mathrm{d}}=\mathrm{m}(\bmod \mathrm{n})$
- Public key: e and n ("modulus")
- Private key: d

RSA Encryption and Decryption

RSA Encryption and Decryption

RSA Encryption and Decryption

- Suppose that Bob wants to send a message m to Alice

RSA Encryption and Decryption

- Suppose that Bob wants to send a message m to Alice
- He can encrypt a message by computing $\left.\mathbf{c}=\mathbf{m e}^{(\bmod } \mathbf{n}\right)$

RSA Encryption and Decryption

- Suppose that Bob wants to send a message m to Alice
- He can encrypt a message by computing c = me ${ }^{(\bmod n)}$
- Everyone knows that Alice's public key is e and n

RSA Encryption and Decryption

- Suppose that Bob wants to send a message m to Alice
- He can encrypt a message by computing $\mathbf{c}=\mathbf{m e}^{\mathbf{e}}(\bmod \mathbf{n})$
- Everyone knows that Alice's public key is e and n
- She can decrypt his message by computing $c^{d}=\left(m^{e}\right)^{d}=m$ (mod n)

RSA Encryption and Decryption

- Suppose that Bob wants to send a message m to Alice
- He can encrypt a message by computing c = me ${ }^{(\bmod n)}$
- Everyone knows that Alice's public key is e and n
- She can decrypt his message by computing $c^{d}=\left(m^{e}\right)^{d}=m$ $(\bmod n)$
- Only Alice knows her private key d

Breaking RSA

Breaking RSA

- Eve needs to compute d to decrypt the message

Breaking RSA

- Eve needs to compute d to decrypt the message
- e, d, and n aren't just three arbitrarily chosen numbers!

Breaking RSA

- Eve needs to compute d to decrypt the message
- e, d, and \mathbf{n} aren't just three arbitrarily chosen numbers!
- $\mathbf{n}=\mathbf{p q}$, where \mathbf{p} and \mathbf{q} are two very large primes ($\sim 2^{1024}$)

Breaking RSA

- Eve needs to compute d to decrypt the message
- e, d, and \mathbf{n} aren't just three arbitrarily chosen numbers!
- $\mathbf{n}=\mathbf{p q}$, where \mathbf{p} and \mathbf{q} are two very large primes ($\sim 2^{1024}$)
- For RSA encryption and decryption to work, ed = 1 (mod ($\mathbf{p - 1}$)*(q-1)) (Euler's totient theorem)

Breaking RSA

- Eve needs to compute d to decrypt the message
- e, d, and \mathbf{n} aren't just three arbitrarily chosen numbers!
- $\mathbf{n}=\mathbf{p q}$, where \mathbf{p} and \mathbf{q} are two very large primes ($\sim 2^{1024}$)
- For RSA encryption and decryption to work, ed = 1 (mod ($\mathrm{p}-1$) $*(\mathrm{q}-1)$) (Euler's totient theorem)
- As far as we know, computing d means that we have to

Breaking RSA

- Eve needs to compute d to decrypt the message
-e, d, and \mathbf{n} aren't just three arbitrarily chosen numbers!
- $\mathbf{n}=\mathbf{p q}$, where \mathbf{p} and \mathbf{q} are two very large primes ($\sim 2^{1024}$)
- For RSA encryption and decryption to work, ed = 1 (mod ($\mathrm{p}-1$) $*(\mathrm{q}-1)$) (Euler's totient theorem)
- As far as we know, computing d means that we have to

1. Factor \mathbf{n} into \mathbf{p} and \mathbf{q}

Breaking RSA

- Eve needs to compute d to decrypt the message
-e, d, and \mathbf{n} aren't just three arbitrarily chosen numbers!
- $\mathbf{n}=\mathbf{p q}$, where \mathbf{p} and \mathbf{q} are two very large primes ($\sim 2^{1024}$)
- For RSA encryption and decryption to work, ed = 1 (mod ($\mathrm{p}-1$) $*(\mathrm{q}-1)$) (Euler's totient theorem)
- As far as we know, computing d means that we have to

1. Factor \mathbf{n} into \mathbf{p} and \mathbf{q}
2. Solve ed $=1(\bmod (p-1) *(q-1))$ for d

Breaking RSA

- Eve needs to compute d to decrypt the message
-e, d, and \mathbf{n} aren't just three arbitrarily chosen numbers!
- $\mathbf{n}=\mathbf{p q}$, where \mathbf{p} and \mathbf{q} are two very large primes ($\sim 2^{1024}$)
- For RSA encryption and decryption to work, ed = 1 (mod ($\mathrm{p}-1$) $*(\mathrm{q}-1)$) (Euler's totient theorem)
- As far as we know, computing d means that we have to

1. Factor \mathbf{n} into \mathbf{p} and \mathbf{q}
2. Solve ed $=1(\bmod (p-1) *(q-1))$ for d

- It turns out that Step 2 is easy and Step 1 is hard!

Breaking RSA

- Eve needs to compute d to decrypt the message
-e, d, and \mathbf{n} aren't just three arbitrarily chosen numbers!
- $\mathbf{n}=\mathbf{p q}$, where \mathbf{p} and \mathbf{q} are two very large primes ($\sim 2^{1024}$)
- For RSA encryption and decryption to work, ed = 1 (mod ($\mathbf{p - 1}$) $*(\mathbf{q - 1})$) (Euler's totient theorem)
- As far as we know, computing d means that we have to

1. Factor \mathbf{n} into \mathbf{p} and \mathbf{q}
2. Solve ed $=1(\bmod (p-1) *(q-1))$ for d

- It turns out that Step 2 is easy and Step 1 is hard!
- The security of RSA relies on factoring being difficult

Factoring is (Maybe) Hard

Factoring is (Maybe) Hard

- Quick! Factor 561!

Factoring is (Maybe) Hard

- Quick! Factor 561!
- There is no known efficient factoring algorithm

Factoring is (Maybe) Hard

- Quick! Factor 561!
- There is no known efficient factoring algorithm
- Researchers spent 2007-2009 on factoring a 768-bit modulus (232 digits)

Factoring is (Maybe) Hard

- Quick! Factor 561!
- There is no known efficient factoring algorithm
-Researchers spent 2007-2009 on factoring a 768-bit modulus (232 digits)
- It took the equivalent of almost 2000 years of computing

Factoring is (Maybe) Hard

- Quick! Factor 561!
- There is no known efficient factoring algorithm
-Researchers spent 2007-2009 on factoring a 768-bit modulus (232 digits)
- It took the equivalent of almost 2000 years of computing
- Factoring a 1024-bit RSA modulus would be 1000x harder, but could happen in the next decade (2019 is coming up!)

Factoring Complexity

Factoring Complexity

- When people talk about factoring complexity, they typically describe runtime with respect to the bits that it takes to represent the number n (i.e. $\log _{2} n$)

Factoring Complexity

- When people talk about factoring complexity, they typically describe runtime with respect to the bits that it takes to represent the number n (i.e. $\log _{2} n$)
- Factoring is in NP: the answer can be verified by multiplying, which takes polynomial time

Factoring Complexity

- When people talk about factoring complexity, they typically describe runtime with respect to the bits that it takes to represent the number $n\left(i . e . \log _{2} n\right.$)
- Factoring is in NP: the answer can be verified by multiplying, which takes polynomial time
- We don't know if factoring is in P : the best algorithms for factoring are better than exponential but worse than polynomial

Factoring Complexity

- When people talk about factoring complexity, they typically describe runtime with respect to the bits that it takes to represent the number $n\left(i . e . \log _{2} n\right.$)
- Factoring is in NP: the answer can be verified by multiplying, which takes polynomial time
- We don't know if factoring is in P : the best algorithms for factoring are better than exponential but worse than polynomial
- Quantum computers can factor large numbers in polynomial time with Shor's algorithm

Factoring Complexity

- When people talk about factoring complexity, they typically describe runtime with respect to the bits that it takes to represent the number $n\left(i . e . \log _{2} n\right.$)
- Factoring is in NP: the answer can be verified by multiplying, which takes polynomial time
- We don't know if factoring is in P : the best algorithms for factoring are better than exponential but worse than polynomial
- Quantum computers can factor large numbers in polynomial time with Shor's algorithm
- But their most recent breakthrough was factoring 21, so...

Applications of RSA

Applications of RSA

- For now (and for many years to come), RSA is secure

Applications of RSA

- For now (and for many years to come), RSA is secure
- Many protocols rely on RSA today

Applications of RSA

- For now (and for many years to come), RSA is secure
- Many protocols rely on RSA today
- SSH (how to connect securely to the lab computers)

Applications of RSA

- For now (and for many years to come), RSA is secure
- Many protocols rely on RSA today
- SSH (how to connect securely to the lab computers)
- SSL/TLS (the "S" in "HTTPS", how to connect securely to Facebook, etc.)

Break!

Injection Attacks

Compromising Web Servers

Compromising Web Servers

- What could you do if you controlled one of Facebook's servers?

Compromising Web Servers

- What could you do if you controlled one of Facebook's servers?
- Steal sensitive data (e.g. data from many users)

Compromising Web Servers

- What could you do if you controlled one of Facebook's servers?
- Steal sensitive data (e.g. data from many users)
- Change server data (e.g. affect users)

Compromising Web Servers

- What could you do if you controlled one of Facebook's servers?
- Steal sensitive data (e.g. data from many users)
- Change server data (e.g. affect users)
- Gateway to enabling attacks on users

Compromising Web Servers

- What could you do if you controlled one of Facebook's servers?
- Steal sensitive data (e.g. data from many users)
- Change server data (e.g. affect users)
- Gateway to enabling attacks on users
- Impersonation (of users to servers, or vice versa)

Code Injection Attacks

Code Injection Attacks

- Injection attacks are one way to compromise web servers

Code Injection Attacks

- Injection attacks are one way to compromise web servers
- People first started talking about this back in 1998, with hundreds of proposed fixes and solutions

Code Injection Attacks

- Injection attacks are one way to compromise web servers
- People first started talking about this back in 1998, with hundreds of proposed fixes and solutions
- General attack structure:

Code Injection Attacks

- Injection attacks are one way to compromise web servers
- People first started talking about this back in 1998, with hundreds of proposed fixes and solutions
- General attack structure:
- Attacker user provides some bad input

Code Injection Attacks

- Injection attacks are one way to compromise web servers
- People first started talking about this back in 1998, with hundreds of proposed fixes and solutions
- General attack structure:
- Attacker user provides some bad input
- Web server does not check input format

Code Injection Attacks

- Injection attacks are one way to compromise web servers
- People first started talking about this back in 1998, with hundreds of proposed fixes and solutions
- General attack structure:
- Attacker user provides some bad input
- Web server does not check input format
- Enables attacker to execute arbitrary code on the server

Code Injection Attacks

- Injection attacks are one way to compromise web servers
- People first started talking about this back in 1998, with hundreds of proposed fixes and solutions
- General attack structure:
- Attacker user provides some bad input
- Web server does not check input format
- Enables attacker to execute arbitrary code on the server

Summary

Summary

- Computer security studies how we can allow for the intended use of computer systems while preventing unwanted use that may cause harm

Summary

- Computer security studies how we can allow for the intended use of computer systems while preventing unwanted use that may cause harm
- Cryptography studies how we can communicate with others securely

Summary

- Computer security studies how we can allow for the intended use of computer systems while preventing unwanted use that may cause harm
- Cryptography studies how we can communicate with others securely
- As programmers, we must be mindful of security best practices when developing applications

Summary

- Computer security studies how we can allow for the intended use of computer systems while preventing unwanted use that may cause harm
- Cryptography studies how we can communicate with others securely
- As programmers, we must be mindful of security best practices when developing applications
- Even then, it might not be enough!

Summary

- Computer security studies how we can allow for the intended use of computer systems while preventing unwanted use that may cause harm
- Cryptography studies how we can communicate with others securely
- As programmers, we must be mindful of security best practices when developing applications
- Even then, it might not be enough!
- CS 161 (Computer Security) goes into much more depth

Summary

- Computer security studies how we can allow for the intended use of computer systems while preventing unwanted use that may cause harm
- Cryptography studies how we can communicate with others securely
- As programmers, we must be mindful of security best practices when developing applications
- Even then, it might not be enough!
- CS 161 (Computer Security) goes into much more depth
- CS 261 and CS 276 are the graduate-level security and cryptography classes

