
Marvin Zhang
08/10/2016

Lecture 29: Artificial Intelligence

Some slides are adapted from CS 188 (Artificial Intelligence)

Announcements

http://cs61a.org/

Roadmap

• This week (Applications), the
goals are:
• To go beyond CS 61A and see

examples of what comes next
• To wrap up CS 61A!

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

Artificial Intelligence (AI)

• The subfield of computer science that studies how to
create programs that:
• Think like humans?

• Well, we don’t really know how humans think
• Act like humans?

• Quick, what’s 17548 * 44?
• Humans can often behave irrationally

• Think rationally?
• What we really care about, though, is behavior

• Act rationally
• A better name for artificial intelligence would be

computational rationality

Applications

• Artificial intelligence has a wide range of applications,
including examples such as:
• Natural language processing
• Computer vision
• Robotics
• Game playing

Game Playing

• Games have historically been a popular area of study in
artificial intelligence, in part because they drive the
study and implementation of efficient AI algorithms
• If you’re interested, two recent-ish results include

playing Atari games at human expert levels and 
playing Go beyond top human levels

• Many breakthroughs in AI research have come from building
systems that play games, including advances in:
• Reinforcement learning (Checkers, Atari)
• Rational meta-reasoning (Reversi/Othello)
• Game tree search algorithms (Go)

• We will build AI systems today that play Hog and Ants!

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://en.wikipedia.org/wiki/AlphaGo

Using Markov Decision Processes

Playing Hog

Hog

• Two player dice game
• Take turns rolling 0 to 10 dice and accumulating the sum

into your overall score, until someone reaches 100
• Several special rules to keep track of:

• Pig Out, Free Bacon, Hog Tied, Hog Wild, Hogtimus Prime
• And the notorious Swine Swap

• In the last question of this project, you had to
implement a final strategy that beats always_roll(6) at
least 70% of the time
• This is AI-like, except you (probably) hand-designed

the “intelligence” into your strategy

• We can get up to ~85% win rate against always_roll(6)!
I’ll show you how, using AI techniques and algorithms

Agents and Environments

• Many, if not most, problems in AI are formalized using
the concepts of an agent and an environment

• The agent perceives information about the environment and
performs actions that may change the environment

• This is a natural way to describe many games, robotic
systems, humans, and much more

Agent Environment

percepts

actions

Hog Agents and Environments

• In the game of Hog, who is the agent?
• You, or the computer

• What is the environment?
• It’s the whole game!
• Your opponent
• (We are considering the opposing agent to be part of

the environment, because it’s simpler this way)
• You and your opponent’s score
• The rules of the game

• In AI, the problem we care about is figuring out how the
agent should choose its actions, given what it perceives,
so as to positively shape its environment

Agent Environment

percepts

actions

Markov Decision Processes

• To do this for Hog, we will formalize our environment as a 
Markov Decision Process (MDP)

• This means is that we have to specify:

• A set of states S, which are the states of the environment

• For Hog, we just need the two scores to represent states

• A set of actions A, which are the actions the agent can take

• This is how many dice the agent chooses to roll

• A reward function R(s), which is the reward for each state s
• We get a positive/negative reward only when we win/lose

• A transition function T(s, a, s’), which tells us the
probability of going to state s’ starting from state s and
choosing action a

• We get this from dice probabilities and rules of the game

Policies

• Now, with our MDP, we can formalize our problem
• Our agent has a policy 𝜋, which is a function that takes in

a state and outputs the action to take for that state
• The policies that the computer uses were called strategies

in the project
• Our goal is to find the optimal policy 𝜋* that maximizes

the expected amount of reward the agent receives
• In our case, this means maximizing the win rate against

some fixed opponent, such as always_roll(6)
• How do we find this optimal policy? The reward function

gives us very little information because it is 0 except for
winning and losing states

• We need something that will tell us about which states are
more or less likely to win from

Value Functions

• Reward function: R(s) = reward of being in state s

• Value function: V(s) = value of being in state s
• The value is the long-term expected reward
• How do we determine the value of a state? With recursion!

• The value of a state is the reward of the state plus the
value of the state we end up in next.

• We take a maximum over all possible actions because we want
to find the value for the optimal policy

• We use a summation and T(s, a, s’) because there may be
several different states we could end up in

Value Iteration

• We may have to compute V(s) multiple times in order to get it
right, because the value of later states s’ can change and this
can affect the value of s

• This leads us to an algorithm known as value iteration:
• Repeat:

• For all states s, determine V(s)  
 
 

• If V doesn’t change, return the policy 𝜋 that, given a state
s, chooses the action a that maximizes the expected value of
the next state s’  
 
 

• We can show that this policy is optimal, under the correct
assumptions! But let’s not do the math

Algorithms for MDPs

• We now have an algorithm that will find us the optimal
policy for playing against always_roll(6)!
• It also does quite well against other opponents

• This algorithm, value iteration, is just a special case
of a family of algorithms for solving MDPs by alternating
between two steps:
• Policy evaluation: Determine the value of each state s,

but using the current policy rather than the optimal
• Policy iteration: Improve the current policy to a new

policy using the value function found in the first step
• Value iteration combines these two steps into one!

• Let’s see the optimal policy in action

(demo)

Using rollout-based methods

Playing Ants

Reinforcement Learning (RL)

• In the reinforcement learning setting, we still model our
environment as an MDP, except now we don’t know our reward
function R(s) or transition function T(s, a, s’)

• This is very much like the real world, and here’s an analogy:
suppose you go on a date with someone

• You are the agent, the other person and the setting are the
environment, and you don’t know the environment that well

• At the beginning of the date, you 
might not know how to act, so you 
try different things to see how the 
other person responds

• As the date goes on, you slowly 
figure out how you should act 
based on what you’ve tried so far, 
and how it went

• With some luck, and the right algorithm, 
you may learn how to act optimally!

Some
oneYou

Do you 
like cats?Ew, no.
Oh… yeah, 
me neither.

So… 
do you 

like dogs?
I love
dogs!

Omg me
too!!

DATE:  
SUCCESS

RL Algorithms

• Algorithms for reinforcement learning must solve a more
general problem than algorithms like value iteration,
because we don’t know how our environment works

• We have to make sure to try different actions to
determine which ones work well in our environment
• This is called exploration

• However, we also want to make sure to use actions that we
have already found to be good
• This is called exploitation

• Balancing exploration and exploitation is a key problem
that RL algorithms must address, and there are many
different ways to handle this

RL for Ants

• It’s a little weird to use MDPs and RL for Ants. Why?
• Everything is deterministic
• This means that we don’t need a transition function,

and we actually do know how our environment works
• However, the state space for Ants is very, very large

• So even though we could specify how our environment
works, it is very difficult to code it and for our
program to utilize all of this information

• A more reasonable approach is thus to only look at a
subset of states and actions, e.g., the more likely
ones, and find an approximation that hopefully works
for all states

• Now, it makes sense to use MDPs and RL for Ants

Rollout-based Policy Iteration

• In reinforcement learning and some other settings, a rollout
is essentially a simulation, where the agent takes a certain
number of actions in the environment

• Algorithms that use rollouts to find a policy are sometimes
called rollout-based algorithms

• One such algorithm is rollout-based policy iteration, which
approximates the value function V(s) using rollouts
• For every state seen during the rollouts, the value of

that state is the average of the rewards after that state
for every rollout that included that state

• For the unseen states, we assign them values by looking
at the seen states that seem the most similar

• We balance exploration and exploitation by sometimes
selecting a random action, rather than using our policy

• Let’s see a policy trained using this algorithm in action

(demo)

Summary

• Artificial intelligence is all about building programs
that act rationally, i.e., computational rationality

• Game playing is an important and natural domain for much
of artificial intelligence research and development
• We built an agent that plays Hog optimally against

always_roll(6), using MDPs and value iteration
• We built an agent that plays Ants pretty well, using

reinforcement learning and rollout-based methods
• However, applications of AI go far beyond games and

stretch into almost every area of everyday life
• If you’re interested, take:

• CS 188 (Introduction to Artificial Intelligence)
• CS 189 (Introduction to Machine Learning)

Thank you

