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Lecture 29: Artificial Intelligence

Some slides are adapted from CS 188 (Artificial Intelligence)
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Roadmap

• This week (Applications), the 
goals are:
• To go beyond CS 61A and see 

examples of what comes next
• To wrap up CS 61A!
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Artificial Intelligence (AI)

• The subfield of computer science that studies how to 
create programs that:
• Think like humans?

• Well, we don’t really know how humans think
• Act like humans?

• Quick, what’s 17548 * 44?
• Humans can often behave irrationally

• Think rationally?
• What we really care about, though, is behavior

• Act rationally

• A better name for artificial intelligence would be 
computational rationality
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Game Playing

• Games have historically been a popular area of study in 
artificial intelligence, in part because they drive the 
study and implementation of efficient AI algorithms 
• If you’re interested, two recent-ish results include 

playing Atari games at human expert levels and 
playing Go beyond top human levels 

• Many breakthroughs in AI research have come from building 
systems that play games, including advances in: 
• Reinforcement learning (Checkers, Atari) 
• Rational meta-reasoning (Reversi/Othello) 
• Game tree search algorithms (Go) 

• We will build AI systems today that play Hog and Ants!

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://en.wikipedia.org/wiki/AlphaGo


Using Markov Decision Processes
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Hog

• Two player dice game
• Take turns rolling 0 to 10 dice and accumulating the sum 

into your overall score, until someone reaches 100
• Several special rules to keep track of:

• Pig Out, Free Bacon, Hog Tied, Hog Wild, Hogtimus Prime 
• And the notorious Swine Swap

• In the last question of this project, you had to 
implement a final strategy that beats always_roll(6) at 
least 70% of the time
• This is AI-like, except you (probably) hand-designed 

the “intelligence” into your strategy

• We can get up to ~85% win rate against always_roll(6)! 
I’ll show you how, using AI techniques and algorithms
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• In the game of Hog, who is the agent?
• You, or the computer

• What is the environment?
• It’s the whole game!
• Your opponent
• (We are considering the opposing agent to be part of 

the environment, because it’s simpler this way)
• You and your opponent’s score
• The rules of the game

• In AI, the problem we care about is figuring out how the 
agent should choose its actions, given what it perceives, 
so as to positively shape its environment

Agent Environment

percepts

actions
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Markov Decision Processes

• To do this for Hog, we will formalize our environment as a 
Markov Decision Process (MDP)

• This means is that we have to specify:

• A set of states S, which are the states of the environment

• For Hog, we just need the two scores to represent states

• A set of actions A, which are the actions the agent can take

• This is how many dice the agent chooses to roll

• A reward function R(s), which is the reward for each state s
• We get a positive/negative reward only when we win/lose

• A transition function T(s, a, s’), which tells us the 
probability of going to state s’ starting from state s and 
choosing action a

• We get this from dice probabilities and rules of the game
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Policies

• Now, with our MDP, we can formalize our problem
• Our agent has a policy 𝜋, which is a function that takes in 

a state and outputs the action to take for that state
• The policies that the computer uses were called strategies 

in the project
• Our goal is to find the optimal policy 𝜋* that maximizes 

the expected amount of reward the agent receives
• In our case, this means maximizing the win rate against 

some fixed opponent, such as always_roll(6)
• How do we find this optimal policy? The reward function 

gives us very little information because it is 0 except for 
winning and losing states

• We need something that will tell us about which states are 
more or less likely to win from
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Value Functions

• Reward function: R(s) = reward of being in state s

• Value function: V(s) = value of being in state s
• The value is the long-term expected reward
• How do we determine the value of a state? With recursion!

• The value of a state is the reward of the state plus the 
value of the state we end up in next.

• We take a maximum over all possible actions because we want 
to find the value for the optimal policy

• We use a summation and T(s, a, s’) because there may be 
several different states we could end up in
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Value Iteration

• We may have to compute V(s) multiple times in order to get it 
right, because the value of later states s’ can change and this 
can affect the value of s

• This leads us to an algorithm known as value iteration:
• Repeat:

• For all states s, determine V(s)  
 
 

• If V doesn’t change, return the policy 𝜋 that, given a state 
s, chooses the action a that maximizes the expected value of 
the next state s’  
 
 

• We can show that this policy is optimal, under the correct 
assumptions! But let’s not do the math
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Algorithms for MDPs

• We now have an algorithm that will find us the optimal 
policy for playing against always_roll(6)!
• It also does quite well against other opponents

• This algorithm, value iteration, is just a special case 
of a family of algorithms for solving MDPs by alternating 
between two steps:
• Policy evaluation: Determine the value of each state s, 

but using the current policy rather than the optimal
• Policy iteration: Improve the current policy to a new 

policy using the value function found in the first step
• Value iteration combines these two steps into one!

• Let’s see the optimal policy in action

(demo)
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RL Algorithms

• Algorithms for reinforcement learning must solve a more 
general problem than algorithms like value iteration, 
because we don’t know how our environment works

• We have to make sure to try different actions to 
determine which ones work well in our environment
• This is called exploration

• However, we also want to make sure to use actions that we 
have already found to be good
• This is called exploitation

• Balancing exploration and exploitation is a key problem 
that RL algorithms must address, and there are many 
different ways to handle this
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• It’s a little weird to use MDPs and RL for Ants. Why?
• Everything is deterministic
• This means that we don’t need a transition function, 

and we actually do know how our environment works
• However, the state space for Ants is very, very large

• So even though we could specify how our environment 
works, it is very difficult to code it and for our 
program to utilize all of this information

• A more reasonable approach is thus to only look at a 
subset of states and actions, e.g., the more likely 
ones, and find an approximation that hopefully works 
for all states

• Now, it makes sense to use MDPs and RL for Ants
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• In reinforcement learning and some other settings, a rollout 
is essentially a simulation, where the agent takes a certain 
number of actions in the environment

• Algorithms that use rollouts to find a policy are sometimes 
called rollout-based algorithms

• One such algorithm is rollout-based policy iteration, which 
approximates the value function V(s) using rollouts
• For every state seen during the rollouts, the value of 

that state is the average of the rewards after that state 
for every rollout that included that state

• For the unseen states, we assign them values by looking 
at the seen states that seem the most similar

• We balance exploration and exploitation by sometimes 
selecting a random action, rather than using our policy

• Let’s see a policy trained using this algorithm in action

(demo)
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• Artificial intelligence is all about building programs 
that act rationally, i.e., computational rationality

• Game playing is an important and natural domain for much 
of artificial intelligence research and development
• We built an agent that plays Hog optimally against 

always_roll(6), using MDPs and value iteration
• We built an agent that plays Ants pretty well, using 

reinforcement learning and rollout-based methods
• However, applications of AI go far beyond games and 

stretch into almost every area of everyday life
• If you’re interested, take:

• CS 188 (Introduction to Artificial Intelligence)
• CS 189 (Introduction to Machine Learning)
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