
CONTROL AND ENVIRONMENT DIAGRAMS 1
COMPUTER SCIENCE 61A

June 23, 2016

1 Control

Control structures direct the flow of logic in a program. For example, conditionals (if-
elif-else) allow a program to skip sections of code, while iteration (while), allows a
program to repeat a section.

1.1 If statements

Conditional statements let programs execute different lines of code depending on certain
conditions. Let’s review the if- elif-else syntax:
if <conditional expression>:

<suite of statements>
elif <conditional expression>:

<suite of statements>
else:

<suite of statements>

Recall the following points:

• The else and elif clauses are optional, and you can have any number of elif
clauses.

• A conditional expression is a expression that evaluates to either a true value (True,
a non-zero integer, etc.) or a false value (False, 0, None, "", [], etc.).

• Only the suite that is indented under the first if/elif with a conditional expres-
sion evaluating to a true value will be executed.

DISCUSSION 1: CONTROL AND ENVIRONMENT DIAGRAMS Page 2
• If none of the conditional expressions evaluate to a true value, then the else suite

is executed. There can only be one else clause in a conditional statement!

1.2 Boolean Operators

Python also includes the boolean operators and, or, and not. These operators are used
to combine and manipulate boolean values.

• not returns the opposite truth value of the following expression.

• and stops evaluating any more expressions (short-circuits) once it reaches the first
false value and returns it. If all values evaluate to a true value, the last value is
returned.

• or short-circuits at the first true value and returns it. If all values evaluate to a false
value, the last value is returned.

>>> not None
True
>>> not True
False
>>> -1 and 0 and 1
0
>>> False or 9999 or 1/0
9999

1.3 Questions

1. Alfonso will only wear a jacket outside if it is below 60 degrees or it is raining. Fill
in the function wears jacket which takes in the current temperature and a Boolean
value telling if it is raining and returns True if Alfonso will wear a jacket and False
otherwise.

This should only take one line of code!
def wears_jacket(temp, raining):

"""
>>> rain = False
>>> wears_jacket(90, rain)
False
>>> wears_jacket(40, rain)
True
>>> wears_jacket(100, True)
True
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 1: CONTROL AND ENVIRONMENT DIAGRAMS Page 3

2. To handle discussion section overflow, TAs may direct students to a more empty sec-
tion that is happening at the same time. Write the function handle overflow, which
takes in the number of students at two sections and prints out what to do if either sec-
tion exceeds 30 students. See the doctests below for the behavior.
def handle_overflow(s1, s2):

"""
>>> handle_overflow(27, 15)
No overflow.
>>> handle_overflow(35, 29)
1 spot left in Section 2.
>>> handle_overflow(20, 32)
10 spots left in Section 1.
>>> handle_overflow(35, 30)
No space left in either section.
"""

1.4 While loops

Iteration lets a program repeat statements multiple times. A common iterative block of
code is the while loop:
while <conditional clause>:

<body of statements>

As long as <conditional clause> evaluates to a true value, <body of statements>
will continue to be executed. The conditional clause gets evaluated each time the body
finishes executing.

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 1: CONTROL AND ENVIRONMENT DIAGRAMS Page 4
1.5 Questions

1. What is the result of evaluating the following code?
def square(x):

return x * x

def so_slow(num):
x = num
while x > 0:

x = x + 1
return x / 0

square(so_slow(5))

2. Fill in the is prime function, which returns True if n is a prime number and False
otherwise. After you have a working solution, think about potential ways to make
your solution more efficient.

Hint: use the % operator: x % y returns the remainder of x when divided by y.
def is_prime(n):

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 1: CONTROL AND ENVIRONMENT DIAGRAMS Page 5
1.6 Have Some More Control!

1. Implement fizzbuzz(n), which prints numbers from 1 to n (inclusive). However,
for numbers divisible by 3, print “fizz”. For numbers divisible by 5, print “buzz”. For
numbers divisible by both 3 and 5, print “fizzbuzz”.

This is a standard software engineering interview question, but even though we’re
barely one week into the course, we’re confident in your ability to solve it!
def fizzbuzz(n):

"""
>>> result = fizzbuzz(16)
1
2
fizz
4
buzz
fizz
7
8
fizz
buzz
11
fizz
13
14
fizzbuzz
16
>>> result == None
True
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 1: CONTROL AND ENVIRONMENT DIAGRAMS Page 6

2 Lists and For Statements

2.1 List slicing and indexing

If we want to access more than one element of a list at a time, we can use a slice. Slicing
a sequence is very similar to indexing. We specify a starting index and an ending index,
separated by a colon. Python creates a new list with the elements from the starting index
up to (but not including) the ending index. Specifically, we can write [start:stop] to slice a
list with two integers.

start denotes the index for the beginning of the slice(inclusive)
stop denotes the index for the end of the slice(exclusive)

Using negative indices for start and end behaves in the same way as indexing into nega-
tive indices. Slicing a list always creates a new list.
>>> pizza = [1, 2, 3, 4]
>>> pizza[0]
1
>>> pizza[-1]
4
>>> pizza[-4]
1
>>> pizza[1:2]
[2]
>>> pizza[1:]
[2, 3, 4]
>>> pizza[-2:3]
[3]

2.2 For Statement Execution Procedure

for <name> in <expression>:
<suite>

• Evaluate the header <expression>, which must yield an iterable value, such as a
list

• For each element in that sequence, in order:
A. Bind <name> to that element in the current frame
B. Execute the <suite>

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 1: CONTROL AND ENVIRONMENT DIAGRAMS Page 7
2.3 Questions

1. What would Python print?
>>> a = [1, 5, 4, [2, 3], 3]
>>> print(a[0], a[-1])

>>> len(a)

>>> 2 in a

>>> 4 in a

>>> a[3][0]

2. What would Python print?
>>> apple = [3, 2, 1, 0]
>>> def banana(fruits):

for apple in fruits:
print(apple)

>>> banana(apple)

3. What would Python print?
>>> x = [1, 3, 5, 7]
>>> def partial(lst):

first = lst[0]
if first == 3:

print('Hello')
else:

print('Goodbye')
return lst

>>> partial(x)

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 1: CONTROL AND ENVIRONMENT DIAGRAMS Page 8

4. What would Python print?
>>> lst = [3, 2, 1, 0]
>>> def fungus(spore):

x = 0
while spore[x] != 0:

print('Mushroom!')
x += 1

return x

>>> fungus(lst)

5. Define a function print negative that takes in a list lst and prints all the negative
numbers in the list.
def print_negative(lst):

for ______________ in ______________:

if ______________________________:

print(______________)

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 1: CONTROL AND ENVIRONMENT DIAGRAMS Page 9

3 Environment Diagrams

An environment diagram keeps track of all the variables that have been defined and the
values they are bound to.

x = 3

def square(x):
return x ** 2

square(2)

When you execute assignment statements in an environment diagram (like x = 3), you
need to record the variable name and the value:

1. Evaluate the expression on the right side of the = sign

2. Write the variable name and the expression’s value in the current frame.

When you execute def statements, you need to record the function name and bind the
function object to the name.

1. Write the function name (e.g., square) in the frame and point it to a function object
(e.g., func square(x) [parent=Global]). The [parent=Global] denotes
the frame in which the function was defined.

When you execute a call expression (like square(2)), you need to create a new frame to
keep track of local variables.

1. Draw a new frame. a Label it with

• a unique index (f1, f2, f3 and so on)

• the intrinsic name of the function (square), which is the name of the func-
tion object itself. For example, if the function object is func square(x)
[parent=Global], the intrinsic name is square.

• the parent frame ([parent=Global])

2. Bind the formal parameters to the arguments passed in (e.g. bind x to 3).

3. Evaluate the body of the function.

If a function does not have a return value, it implicitly returns None. Thus, the “Return
value” box should contain None.

aSince we do not know how built-in functions like add(...) or min(...) are implemented, we do not draw a new frame when
we call built-in functions.

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 1: CONTROL AND ENVIRONMENT DIAGRAMS Page 10
3.1 Environment Diagram Questions

1. Draw the environment diagram that results from running the following code.
a = 1
def b(b):

return a + b
a = b(a)
a = b(a)

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 1: CONTROL AND ENVIRONMENT DIAGRAMS Page 11

2. Draw the environment diagram so we can visualize exactly how Python evaluates the
code. What is the output of running this code in the interpreter?
>>> from operator import add
>>> def sub(a, b):
... sub = add
... return a - b
>>> add = sub
>>> sub = min
>>> print(add(2, sub(2, 3)))

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

