Growth and Data Abstraction 4

COMPUTER SCIENCE 61A

July 5, 2016

1 Orders of Growth

When we talk about the efficiency of a function, we are often interested in the following: if the size of the input grows, how does the runtime of the function change? And what do we mean by "runtime"? Let's look at the following examples first:

```
def square(n):
    return n * n

def factorial(n):
    if n == 0:
        return 1
    return n * factorial(n - 1)
```

• square(1) requires one primitive operation: * (multiplication). square(100) also requires one. No matter what input n we pass into square, it always takes one operation.

input	function call	return value	number of operations
1	square(1)	1*1	1
2	square(2)	2*2	1
:	:	:	:
100	square(100)	100*100	1
:	:	:	:
n	square(n)	n*n	1

DISCUSSION 4: GROWTH AND DATA ABSTRACTION

• factorial (1) requires one multiplication, but factorial (100) requires 100 multiplications. As we increase the input size of n, the runtime (number of operations) increases linearly proportional to the input.

input	function call	return value	number of operations
1	factorial(1)	1*1	1
2	factorial(2)	2*1*1	2
:	:	:	:
100	factorial(100)	100*99**1*1	100
:	:	:	
n	factorial(n)	n*(n-1)**1*1	n

For expressing complexity, we use what is called big Θ (Theta) notation. For example, if we say the running time of a function $f \circ \circ$ is in $\Theta(n^2)$, we mean that the running time of the process will grow proportionally with the square of the size of the input as it increases to infinity.

- If a function requires $n^3 + 3n^2 + 5n + 10$ operations with a given input *n*, then the runtime of this function is $\Theta(n^3)$. As *n* gets larger, the lower order terms (10, 5*n*, and $3n^2$) all become insignificant compared to n^3 .
- If a function requires 5n operations with a given input n, then the runtime of this function is Θ(n). The constant 5 only influences the runtime by a constant amount. In other words, the function still runs in linear time. Therefore, it doesn't matter that we drop the constant.

1.1 Kinds of Growth

Here are some common orders of growth, ranked from no growth to fastest growth:

- $\Theta(1)$ constant time takes the same amount of time regardless of input size
- $\Theta(\log n)$ logarithmic time
- $\Theta(n)$ linear time
- $\Theta(n^2)$, $\Theta(n^3)$, etc. polynomial time
- $\Theta(2^n)$ exponential time (considered "intractable"; these are really, really horrible)

1.2 Questions

```
What is the order of growth for the following functions?
1. def sum_of_factorial(n):
       if n == 0:
           return 1
       else:
           return factorial(n) + sum_of_factorial(n - 1)
2. def fib_recursive(n):
      if n == 0 or n == 1:
          return n
      else:
          return fib_recursive(n - 1) + fib_recursive(n - 2)
3. def fib_iter(n):
       prev, curr, i = 0, 1, 0
       while i < n:</pre>
           prev, curr = curr, prev + curr
           i += 1
       return prev
4. def bonk(n):
       total = 0
       while n >= 2:
           total += n
           n = n / 2
       return total
```

DISCUSSION 4: GROWTH AND DATA ABSTRACTION

```
5. def mod_7(n):
      if n % 7 == 0:
          return 0
      else:
          return 1 + mod_7 (n - 1)
6. def bar(n):
      if n % 2 == 1:
          return n + 1
      return n
  def foo(n):
      if n < 1:
          return 2
      if n % 2 == 0:
          return foo(n - 1) + foo(n - 2)
      else:
          return 1 + foo(n - 2)
```

What is the order of growth of foo (bar (n))?

2 Ready. Set. Abstract!

So far, we've only *used* data abstractions. Now let's try *creating* some! In the next section, we'll be looking at two ways of implementing abstract data types: lists and functions.

2.1 Let's Go Shopping

One way to implement abstract data types is with the Python list construct.

```
>>> nums = [1, 2]
>>> nums[0]
1
>>> nums[1]
2
```

We use the square bracket notation to access the data we stored in nums. The data is *zero indexed*: we access the first element with nums[0] and the second with nums[1].

Let's try to simulate going shopping at the supermarket. Let's first build the *item* abstraction, which represents something you could buy at the supermarket.

1. Write the constructor and selectors for the *item* abstraction. An item consists of a string name and an integer price.

```
def make_item(name, price):
def get_item_name(item):
def get_item_price(item):
```

2. Write purchase, which calculates the total price of a list of items.
def purchase(items):

A second way of constructing abstract data types is with higher-order functions. We can implement the functions pair and select to achieve the same result as a list.

```
>>> def pair(x, y):
         """Return a function that represents a pair of data."""
. . .
         def get(index):
. . .
             if index == 0:
. .
                  return x
             elif index == 1:
- - -
                  return y
. .
        return get
. . .
>>> def select(p, i):
         """Return the element at index I of pair P."""
. . .
        return p(i)
. . .
>>> nums = pair(1, 2)
>>> select(nums, 0)
1
>>> select(nums, 1)
2
```

Note how although using functional pairs is syntactically different from using lists, they accomplish the exact same thing.

3.1 EXTREME Couponing

Coupons are a great way to save money at the supermarket! Intuitively, a coupon associates an item with a discount.

1. Implement the coupon abstraction using functional pairs. A coupon pairs a string item name with an integer amount of discount representing a deduction from the cost.

```
def make_coupon(name, discount):
```

```
def get_coupon_name(coupon):
```

```
def get_coupon_discount(coupon):
```

2. Write discount_purchase, which calculates the total price of a list of items after being discounted by a list of coupons.

def discount_purchase(items, coupons):

3.2 Data Abstraction Violations

Data abstraction violations happen when we assume we know something about how our data is represented. For example, if we use pairs and we forget to use a selector and instead use the index.

```
>>> butter = make_item('Butter', 2)
>>> print(butter[0]) # violation!!!!
Butter
```

In this example, we assume that butter is represented as a list because we use the square bracket indexing. However, we should have used the selector get_item_name. This is a data abstraction violation.

Finally, it's time to buy groceries at the supermarket. A supermarket is a list of items.

1. Implement the *supermarket* abstraction.

```
def make_supermarket(items):
```

def get_supermarket_items(supermarket):

DISCUSSION 4: GROWTH AND DATA ABSTRACTION

2. Write the shopping function. Given a grocery list (a list of string item names), a supermarket, and coupon list, calculate the total cost of purchasing every item on the grocery list. You may use any functions you've already written.