
TREES 5
COMPUTER SCIENCE 61A

July 7, 2016

1 Trees

In computer science, trees are recursive data structures that are widely used in various
settings. This is a diagram of a simple tree.

7

1

3

2

−4 0

8

6

11

16

17

19

20

Notice that the tree branches downward. In computer science, the root of a tree starts at
the top, and the leaves are at the bottom.

Some terminology regarding trees:

• Parent node: A node that has children. Parent nodes can have multiple children.

• Child node: A node that has a parent. A child node can only belong to one parent.

• Root: The top node of the tree. In our example, the node that contains 7 is the root.

• Leaf: A node that has no children. In our example, the nodes that contain −4, 0, 6,
17, and 20 are leaves.

DISCUSSION 5: TREES Page 2
• Subtree: Notice that each child of a parent is itself the root of a smaller tree. In

our example, the node containing 1 is the root of another tree. This is why trees are
recursive data structures: trees are made up of subtrees, which are trees themselves.

• Depth: How far away a node is from the root. In other words, the number of edges
between the root of the tree to the node. In the diagram, the node containing 19 has
depth 1; the node containing 3 has depth 2. Since there are no edges between the root
of the tree and itself, the depth of the root is 0.

• Height: The depth of the lowest leaf. In the diagram, the nodes containing −4, 0, 6,
and 17 are all the “lowest leaves,” and they have depth 4. Thus, the entire tree has
height 4.

In computer science, there are many different types of trees. Some vary in the number of
children each node has; others vary in the structure of the tree.

A tree has both an entry and a sequence of children, which are also trees. In our im-
plementation, we represent the children as lists of subtrees. Since a tree is an abstract
data type, our choice to use lists is simply an implementation detail.

• The arguments to the constructor, tree, as a value for the entry and a list of children.

• The selectors are entry and children.

Constructor
def tree(entry, children=[]):

return [entry] + list(children)

Selectors
def entry(tree):

return tree[0]

def children(tree):
return tree[1:]

We have also provided a convenience function, is leaf:

def is_leaf(tree):
return not children(tree)

It’s simple to construct a tree. Let’s try to create the following tree:

1

3

4 5 6

2

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 5: TREES Page 3
t = tree(1,

[tree(3,
[tree(4),
tree(5),
tree(6)]),

tree(2)])

1.1 Question

1. Define a function square tree(t) that squares every item in the tree t. It should
return a new tree. You can assume that every item is a number.
def square_tree(t):

"""Return a tree with the square of every element in t"""

2. Define a function height(t) that returns the height of a tree. Recall that the height
of a tree is the length of the longest path from the root to a leaf.
def height(t):

"""Return the height of a tree"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 5: TREES Page 4
3. Define a function tree size(t) that returns the number of nodes in a tree.
def tree_size(t):

"""Return the size of a tree."""

1.2 More fun with Trees

1. Define the procedure find path(tree, x) that, given a tree tree and a value x,
returns a list containing the nodes along the path required to get from the root of tree
to a node x. If x is not present in tree, return None. Assume that the entries of tree
are unique.

For the following tree, find path(t, 5) should return [2, 7, 6, 5]

2

7

3 6

5 11

15

def find_path(tree, x):
"""
>>> find_path(t, 5)
[2, 7, 6, 5]
>>> find_path(t, 10) # returns None
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 5: TREES Page 5
2. Implement a prune function which takes in a tree t and a depth k, and should return

a new tree that is a copy of only the first k levels of t. For example, if t is the tree
shown in the previous question, then prune(t, 2) should return the tree

2

7

3 6

15

def prune(t, k):

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 5: TREES Page 6
3. We can represent the hailstone sequence as a tree in the figure below, showing the

route different numbers take to reach 1. Remember that a hailstone sequence starts
with a number n, continuing to n/2 if n is even or 3n + 1 if n is odd, ending with
1. Write a function hailstone tree(n, h) which generates a tree of height h,
containing hailstone numbers that will reach n.

Hint: A node of a hailstone tree will always have at least one, and at most two chil-
dren (which are also hailstone trees). Under what conditions do you add the second
branch?

1 2 4 8 16
5 10

3
20

32 64
21

128

def hailstone_tree(n, h):
"""Generates a tree of hailstone numbers that will

reach N, with height H.
>>> hailstone_tree(1, 0)
[1]
>>> hailstone_tree(1, 4)
[1, [2, [4, [8, [16]]]]]
>>> hailstone_tree(8, 3)
[8, [16, [32, [64]], [5, [10]]]]
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

