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1 Nonlocal

Until now, you’ve been able to access variables in parent frames, but you have not been
able to modify them. The nonlocal keyword can be used to modify a variable in the
parent frame outside the current frame. For example, consider stepper, which uses
nonlocal to modify num:
def stepper(num):

def step():
nonlocal num # declares num as a nonlocal variable
num = num + 1 # modifies num in the stepper frame
return num

return step

However, there are two important caveats with nonlocal variables:

• Global variables cannot be modified using the nonlocal keyword.

• Variables in the current frame cannot be overridden using the nonlocal keyword.
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1.1 Environment Diagrams

1. Draw the environment diagram for the code below:
def stepper(num):

def step():
nonlocal num
num = num + 1
return num

return step

s = stepper(3)
s()
s()
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2. Given the definition of make shopkeeper below, draw the environment diagram.
def make_shopkeeper(total_gold):

def buy(cost):
nonlocal total_gold
if total_gold < cost:

return 'Go farm some more champions'
total_gold = total_gold - cost
return total_gold

return buy

infinity_edge, zeal, gold = 3800, 1100, 3800
shopkeeper = make_shopkeeper(gold - 1000)
shopkeeper(zeal)
shopkeeper(infinity_edge)
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1.2 Some Common Misconceptions

1. What is wrong with the following code?
a = 5
def another_add_one():

nonlocal a
a += 1

another_add_one()

2. What is wrong with the following code?
def adder(x):

def add(y):
nonlocal x, y
x += y
return x

return add
adder(2)(3)

1.3 Fill in the Blank

1. The bathtub below simulates an epic battle between Finn and Kylo Ren over a popu-
lace of rubber duckies. Fill in the body of ducky so that all doctests pass.
def bathtub(n):

"""
>>> annihilator = bathtub(500) # the force awakens...
>>> kylo_ren = annihilator(10)
>>> kylo_ren()
490 rubber duckies left
>>> finn = annihilator(-20)
>>> finn()
510 rubber duckies left
>>> kylo_ren()
500 rubber duckies left
"""
def ducky_annihilator(rate):

def ducky():

return ducky
return ducky_annihilator
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2 Midterm Review

2.1 Environment Diagrams

1. Draw the environment diagram that results from executing the code below.

def this(x):
return 2*that(x)

def that(x):
x = y + 1
this = that
return x

x, y = 1, 2
this(that(y))
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2.2 Lambdas

1. Fill in the blanks with one-line lambda expressions so that each call expression that
follows returns 3.
>>> f1 = ________________
>>> f1()
3

>>> f2 = ________________
>>> f2()()
3

>>> f3 = ________________
>>> f3()(3)
3

>>> f4 = ________________
>>> f4()()(3)()
3

2.3 Lists and List Comprehension

1. Write a function that rotates the elements of a list to the right by k. Elements should
not ”fall off”; they should wrap around the beginning of the list. rotate should
return a new list. To make a list of n 0’s, you can do this: [0] * n
def rotate(lst, k):

""" Return a new list, with the same elements
of lst, rotated to the right k.

>>> x = [1, 2, 3, 4, 5]
>>> rotate(x, 3)
[3, 4, 5, 1, 2]
"""
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2. Define a function foo that takes in a list lst and returns a new list that keeps only

the even-indexed elements of lst and multiplies each of those elements by the corre-
sponding index.
def foo(lst):

"""
>>> x = [1, 2, 3, 4, 5, 6]
>>> foo(x)
[0, 6, 20]
"""

return [_________________________________________________]

3. Implement the functions max product, which takes in a list and returns the max-
imum product that can be formed using nonconsecutive elements of the list. The
input list will contain only numbers greater than or equal to 1.
def max_product(lst):

"""Return the maximum product that can be formed using lst
without using any consecutive numbers
>>> [10,3,1,9,2] # 10 * 9
90
"""
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2.4 Trees

1. An expression tree is a tree that contains a function for each non-leaf root, which
can be either ’+’ or ’*’. All leaves are numbers. Implement eval tree, which
evaluates an expression tree to its value. You may want to use the functions sum and
prod, which take a list of numbers and compute the sum and product respectively.
def eval_tree(tree):

"""Evaluates an expression tree with functions as root
>>> eval_tree(tree(1))
1
>>> expr = tree('*', [tree(2), tree(3)])
>>> eval_tree(expr)
6
>>> eval_tree(tree('+', [expr, tree(4)]))
10
"""
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