
MUTABLE FUNCTIONS AND MIDTERM REVIEW 6
COMPUTER SCIENCE 61A

July 12, 2016

1 Nonlocal

Until now, you’ve been able to access variables in parent frames, but you have not been
able to modify them. The nonlocal keyword can be used to modify a variable in the
parent frame outside the current frame. For example, consider stepper, which uses
nonlocal to modify num:
def stepper(num):

def step():
nonlocal num # declares num as a nonlocal variable
num = num + 1 # modifies num in the stepper frame
return num

return step

However, there are two important caveats with nonlocal variables:

• Global variables cannot be modified using the nonlocal keyword.

• Variables in the current frame cannot be overridden using the nonlocal keyword.



DISCUSSION 6: MUTABLE FUNCTIONS AND MIDTERM REVIEW Page 2
1.1 Environment Diagrams

1. Draw the environment diagram for the code below:
def stepper(num):

def step():
nonlocal num
num = num + 1
return num

return step

s = stepper(3)
s()
s()

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 6: MUTABLE FUNCTIONS AND MIDTERM REVIEW Page 3
2. Given the definition of make shopkeeper below, draw the environment diagram.
def make_shopkeeper(total_gold):

def buy(cost):
nonlocal total_gold
if total_gold < cost:

return 'Go farm some more champions'
total_gold = total_gold - cost
return total_gold

return buy

infinity_edge, zeal, gold = 3800, 1100, 3800
shopkeeper = make_shopkeeper(gold - 1000)
shopkeeper(zeal)
shopkeeper(infinity_edge)

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 6: MUTABLE FUNCTIONS AND MIDTERM REVIEW Page 4
1.2 Some Common Misconceptions

1. What is wrong with the following code?
a = 5
def another_add_one():

nonlocal a
a += 1

another_add_one()

2. What is wrong with the following code?
def adder(x):

def add(y):
nonlocal x, y
x += y
return x

return add
adder(2)(3)

1.3 Fill in the Blank

1. The bathtub below simulates an epic battle between Finn and Kylo Ren over a popu-
lace of rubber duckies. Fill in the body of ducky so that all doctests pass.
def bathtub(n):

"""
>>> annihilator = bathtub(500) # the force awakens...
>>> kylo_ren = annihilator(10)
>>> kylo_ren()
490 rubber duckies left
>>> finn = annihilator(-20)
>>> finn()
510 rubber duckies left
>>> kylo_ren()
500 rubber duckies left
"""
def ducky_annihilator(rate):

def ducky():

return ducky
return ducky_annihilator

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 6: MUTABLE FUNCTIONS AND MIDTERM REVIEW Page 5

2 Midterm Review

2.1 Environment Diagrams

1. Draw the environment diagram that results from executing the code below.

def this(x):
return 2*that(x)

def that(x):
x = y + 1
this = that
return x

x, y = 1, 2
this(that(y))

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 6: MUTABLE FUNCTIONS AND MIDTERM REVIEW Page 6
2.2 Lambdas

1. Fill in the blanks with one-line lambda expressions so that each call expression that
follows returns 3.
>>> f1 = ________________
>>> f1()
3

>>> f2 = ________________
>>> f2()()
3

>>> f3 = ________________
>>> f3()(3)
3

>>> f4 = ________________
>>> f4()()(3)()
3

2.3 Lists and List Comprehension

1. Write a function that rotates the elements of a list to the right by k. Elements should
not ”fall off”; they should wrap around the beginning of the list. rotate should
return a new list. To make a list of n 0’s, you can do this: [0] * n
def rotate(lst, k):

""" Return a new list, with the same elements
of lst, rotated to the right k.

>>> x = [1, 2, 3, 4, 5]
>>> rotate(x, 3)
[3, 4, 5, 1, 2]
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 6: MUTABLE FUNCTIONS AND MIDTERM REVIEW Page 7
2. Define a function foo that takes in a list lst and returns a new list that keeps only

the even-indexed elements of lst and multiplies each of those elements by the corre-
sponding index.
def foo(lst):

"""
>>> x = [1, 2, 3, 4, 5, 6]
>>> foo(x)
[0, 6, 20]
"""

return [_________________________________________________]

3. Implement the functions max product, which takes in a list and returns the max-
imum product that can be formed using nonconsecutive elements of the list. The
input list will contain only numbers greater than or equal to 1.
def max_product(lst):

"""Return the maximum product that can be formed using lst
without using any consecutive numbers
>>> [10,3,1,9,2] # 10 * 9
90
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 6: MUTABLE FUNCTIONS AND MIDTERM REVIEW Page 8
2.4 Trees

1. An expression tree is a tree that contains a function for each non-leaf root, which
can be either ’+’ or ’*’. All leaves are numbers. Implement eval tree, which
evaluates an expression tree to its value. You may want to use the functions sum and
prod, which take a list of numbers and compute the sum and product respectively.
def eval_tree(tree):

"""Evaluates an expression tree with functions as root
>>> eval_tree(tree(1))
1
>>> expr = tree('*', [tree(2), tree(3)])
>>> eval_tree(expr)
6
>>> eval_tree(tree('+', [expr, tree(4)]))
10
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin


