
OBJECT ORIENTED PROGRAMMING 8
COMPUTER SCIENCE 61A

July 19, 2016

1 Object Oriented Programming

On Monday, you were introduced to the programming paradigm known as Object-Oriented
Programming (OOP). OOP allows us to treat data as objects - like we do in real life.

For example, consider the class CS61A_Student. Each of you as individuals are an in-
stance of this class. So, a student Mitaswould be an instance of the class CS61A_Student.

Details that all CS61A students have, such as name, year, and major, are called instance
attributes. Every student has these attributes, but their values differ from student to
student. An attribute that is shared among all instances of CS61A_Student is known as
a class attribute. An example would be the instructors attribute; the instructor for
61A, Professor LeBron, is the same for every student in CS61A. However, the TA attribute
isn’t shared among all students since students will not necessarily have the same TA, so
that would be an instance attribute.

All students are able to do homework, attend lecture, and go to office hours. When func-
tions belong to a specific object, they are said to be methods. In this case, these actions
would be bound methods of CS61A_Student objects.

Here is a recap of what we discussed above:

• class: a template for creating objects

• instance: a single object created from a class

• instance attribute: a property of an object, specific to an instance

• class attribute: a property of an object, shared by all instances of the same class

• method: an action (function) that all instances of a class may perform

DISCUSSION 8: OBJECT ORIENTED PROGRAMMING Page 2
1.1 Questions

1. Below we have defined the classes Instructor, Student, and TeachingAssistant,
implementing some of what was described above. Remember that we pass the self
argument implicitly to instance methods when using dot-notation.
class Instructor:

degree = "PhD (Basketball)" # this is a class attribute
def __init__(self, name):

self.name = name # this is an instance attribute

def lecture(self, topic):
print("Today we're learning about " + topic)

lebron = Instructor("Professor LeBron")
class Student:

instructor = lebron

def __init__(self, name, ta):
self.name = name
self.understanding = 0
ta.add_student(self)

def attend_lecture(self, topic):
Student.instructor.lecture(topic)
print(Student.instructor.name + " is awesome!")
self.understanding += 1

def visit_office_hours(self, staff):
staff.assist(self)
print("Thanks, " + staff.name)

class TeachingAssistant:
def __init__(self, name):

self.name = name
self.students = {}

def add_student(self, student):
self.students[student.name] = student

def assist(self, student):
student.understanding += 1

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 8: OBJECT ORIENTED PROGRAMMING Page 3
What will the following lines output?

>>> steph = TeachingAssistant("Steph")
>>> kyrie = Student("Kyrie", steph)
>>> kyrie.attend_lecture("defense")

>>> melo = Student("Carmelo", steph)
>>> melo.attend_lecture("championships")

>>> melo.visit_office_hours(TeachingAssistant("Dwyane"))

>>> kyrie.understanding

>>> steph.students["Carmelo"].understanding

>>> Student.instructor = Instructor("Professor Kobe")
>>> Student.attend_lecture(melo, "game winners")
Equivalent to melo.attend_lecture("game winners")

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 8: OBJECT ORIENTED PROGRAMMING Page 4
2. We now want to write three different classes, Postman, Client, and Email to sim-

ulate email. Fill in the definitions below to finish the implementation!
class Email:

"""Every email object has 3 instance attributes: the
message, the sender (their name), and the addressee
(the destination's name).
"""
def __init__(self, msg, sender, addressee):

class Postman:
"""Each Postman has an instance attribute clients, which
is a dictionary that associates client names with
client objects.
"""
def __init__(self):

self.clients = {}

def send(self, email):
"""Take an email and put it in the inbox of the client
it is addressed to.
"""

def register_client(self, client, client_name):
"""Takes a client object and client_name and adds it
to the clients instance attribute.
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 8: OBJECT ORIENTED PROGRAMMING Page 5
class Client:

"""Every Client has instance attributes name (which is
used for addressing emails to the client), mailman
(which is used to send emails out to other clients), and
inbox (a list of all emails the client has received).
"""
def __init__(self, mailman, name):

self.inbox = []

def compose(self, msg, recipient):
"""Send an email with the given message msg to the
given recipient.
"""

def receive(self, email):
"""Take an email and add it to the inbox of this
client.
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 8: OBJECT ORIENTED PROGRAMMING Page 6

2 Inheritance

Let’s explore another powerful object-oriented programming tool: inheritance. Suppose
we want to write Dog and Cat classes. Here’s our first attempt:
class Dog(object):

def __init__(self, name, owner, color):
self.name = name
self.owner = owner
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says woof!")

class Cat(object):
def __init__(self, name, owner, lives=9):

self.name = name
self.owner = owner
self.lives = lives

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says meow!")

Notice that the only difference between both the Dog and Cat classes are the talkmethod
as well as the color and lives attributes. That’s a lot of repeated code!

This is where inheritance comes in. In Python, a class can inherit the instance variables
and methods of a another class without having to type them all out again. For example:
class Foo(object):

This is the base class

class Bar(Foo):
This is the subclass

Bar inherits from Foo. We call Foo the base class (the class that is being inherited) and
Bar the subclass (the class that does the inheriting).

Notice that Foo also inherits from the object class. In Python, object is the top-level
base class that provides basic functionality; everything inherits from it, even when you
don’t specify a class to inherit from. One common use of inheritance is to represent a
hierarchical relationship between two or more classes where one class is a more specific
version of the other class. For example, a dog is a pet.

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 8: OBJECT ORIENTED PROGRAMMING Page 7
class Pet(object):

def __init__(self, name, owner):
self.is_alive = True # It's alive!!!
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Dog(Pet):
def __init__(self, name, owner, color):

Pet.__init__(self, name, owner)
self.color = color

def talk(self):
print(self.name + ' says woof!')

By making Dog a subclass of Pet, we did not have to redefine self.name, self.owner,
or eat. However, since we want Dog to talk differently, we did redefine, or override,
the talk method.

The line Pet. init (self, name, owner) in the Dog class is necessary for inherit-
ing the instance attributes and methods from Pet. Notice that when we call Pet. init ,
we need to pass in self as a regular argument (that is, inside the parentheses, rather than
by dot-notation) since Pet is a class, not an instance.

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 8: OBJECT ORIENTED PROGRAMMING Page 8
2.1 Questions

1. Implement the Cat class by inheriting from the Pet class. Make sure to use superclass
methods wherever possible. In addition, add a lose life method to the Cat class.
class Cat(Pet):

def __init__(self, name, owner, lives=9):

def talk(self):
"""A cat says meow! when asked to talk."""

def lose_life(self):
"""A cat can only lose a life if they have at
least one life. When lives reaches zero, 'is_alive'
becomes False.
"""

2. More cats! Fill in the methods for NoisyCat, which is just like a normal Cat. How-
ever, NoisyCat talks a lot, printing twice whatever a Cat says.
class NoisyCat(Cat):

"""A Cat that repeats things twice."""
def __init__(self, name, owner, lives=9):

Is this method necessary? Why or why not?

def talk(self):
"""Repeat what a Cat says twice."""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 8: OBJECT ORIENTED PROGRAMMING Page 9
3. What would Python print? (Summer 2013 Final)
class A:

def f(self):
return 2

def g(self, obj, x):
if x == 0:

return A.f(obj)
return obj.f() + self.g(self, x - 1)

class B(A):
def f(self):

return 4

>>> x, y = A(), B()
>>> x.f()

>>> B.f()

>>> x.g(x, 1)

>>> y.g(x, 2)

4. Implement the Yolo class so that the following interpreter session works as expected.
(Summer 2013 Final)
>>> x = Yolo(1)
>>> x.g(3)
4
>>> x.g(5)
6
>>> x.motto = 5
>>> x.g(5)
10

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

