
RECURSIVE OBJECTS 9
COMPUTER SCIENCE 61A

July 21, 2016

1 Linked Lists in OOP

1.1 A New Implementation

Linked lists are data abstractions that can have multiple implementations. Previously,
we saw linked lists implemented using Python lists. Today, we will look at linked lists
implemented using Object-Oriented Programming. Here it is:
class Link:

empty = ()
def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def __getitem__(self, i):
if i == 0:

return self.first
return self.rest[i-1]

def __len__(self):
return 1 + len(self.rest)

When we implemented linked lists using Python lists, we called first(lnk) and rest(lnk)
to access the first and rest elements. This time, we can write lnk.first and lnk.rest
instead. In the former, we could access the elements, but we could not modify them. In
the latter, we can access and also modify the elements. In other words, linked lists imple-
mented using OOP is mutable.

DISCUSSION 9: RECURSIVE OBJECTS Page 2
In addition to the constructor init , we have the special Python methods getitem
and len . Note that any method that begins and ends with two underscores is a spe-
cial Python method. Special Python methods may be invoked using built-in functions and
special notation. The built-in Python element selection operator, as in lst[i], invokes
lst. getitem (i). Likewise, the built-in Python function len, as in len(lst), in-
vokes lst. len ().

1.2 Questions

1. Write sum nums, which takes in a linked list lnk and sums up all elements in lnk.
You may assume all elements in lnk are integers. sum nums should return the sum,
an integer.
def sum_nums(lnk):

"""
>>> a = Link(1, Link(6, Link(7)))
>>> sum_nums(a)
14
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 9: RECURSIVE OBJECTS Page 3
2. Write multiply lnks, which takes in a Python list of Link objects and multiplies

them element-wise. It should return a new linked list. If not all of the Link ob-
jects are of equal length, return a linked list whose length is that of the shortest
linked list given. You may assume the Link objects are shallow linked lists, and
that lst of lnks contains at least one linked list.
def multiply_lnks(lst_of_lnks):

"""
>>> a = Link(2, Link(3, Link(5)))
>>> b = Link(6, Link(4, Link(2)))
>>> c = Link(4, Link(1, Link(0, Link(2))))
>>> p = multiply_lnks([a, b, c])
>>> p.first
48
>>> p.rest.first
12
>>> p.rest.rest.rest
()
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 9: RECURSIVE OBJECTS Page 4
1.3 Extra Questions

1. Define reverse, which takes in a linked list and reverses the order of the links. The
function may not return a new list; it must mutate the original list. Return a pointer
to the head of the reversed list.
def reverse(lnk):

"""
>>> a = Link(1, Link(2, Link(3)))
>>> r = reverse(a)
>>> r.first
3
>>> r.rest.first
2
"""

2. Write a function remove duplicates that takes as input a sorted linked list of inte-
gers, lnk, and mutates lnk so that all duplicates are removed.
def remove_duplicates(lnk):

"""
>>> lnk = Link(1, Link(1, Link(1, Link(1, Link(5)))))
>>> unique = remove_duplicates(lnk)
>>> len(unique)
2
>>> len(lnk)
2
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 9: RECURSIVE OBJECTS Page 5

2 Trees in OOP

2.1 Another New Implementation

Trees are also data abstractions that can have multiple implementations. Previously, we
implemented the tree abstraction using Python lists. Let’s look at another implementation
using objects instead. With this implementation, we can easily specify specialized tree
types, such as binary trees , using inheritance.
class Tree:

def __init__(self, entry, children=[]):
for c in children:

assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is_leaf(self):
return not self.children

Notice that with this implementation we can mutate the entry of a tree by reassigning
tree.entry. In the previous implementation using lists, this was not possible, because
the abstraction barrier prevented us from seeing how the tree was implemented.

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 9: RECURSIVE OBJECTS Page 6
2.2 Questions

1. Consider the following definitions and assignments and determine what Python would
output for each of the calls below if they were evaluated in order.
>>> t0 = Tree(0)
>>> t0.entry

>>> t0.children

>>> t1 = Tree(0, [1, 2])#Is this a valid tree?

>>> t2 = Tree(0, [Tree(1), Tree(2, [Tree(3)])])
>>> t2.children[0]

>>> t2.children[1].children[0].entry

2. Define a function make even which takes in a tree t whose entries are integers, and
mutates the tree such that all the odd integers are increased by 1 and all the even
integers remain the same.
def make_even(t):

"""
>>> t = Tree(1, [Tree(2, [Tree(3)]), Tree(4), Tree(5)])
>>> make_even(t)
>>> t.entry
2
>>> t.children[0].children[0].entry
4
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 9: RECURSIVE OBJECTS Page 7
2.3 Extra Question

1. Write a function that combines the entries of two trees t1 and t2 together with the
combiner function. Assume that t1 and t2 have identical structure. This function
should return a new tree.
def combine_tree(t1, t2, combiner):

"""
>>> a = Tree(1, [Tree(2, [Tree(3)])])
>>> b = Tree(4, [Tree(5, [Tree(6)])])
>>> combined = combine_tree(a, b, mul)
>>> combined.entry
4
>>> combined.children[0].entry
10
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 9: RECURSIVE OBJECTS Page 8

3 Binary Search Trees

3.1 Intro to Binary Search Trees

A Binary Search Tree (BST) is a special kind of tree that satisfies the following properties:

• Every node of a BST has at most two children called left and right. The children
are also BST’s.

• For every node, the left child’s entry is less than or equal to the parent’s entry.

• For every node, the right child’s entry is greater than the parent’s entry.
Binary Search Tree (BST) Class
class BST:

empty = ()
def __init__(self, entry, left=empty, right=empty):

assert left is BST.empty or isinstance(left, BST)
assert right is BST.empty or isinstance(right, BST)

self.entry = entry
self.left = left
self.right = right

if left is not BST.empty:
assert left.max <= entry

if right is not BST.empty:
assert entry < right.min

@property
def max(self):

if self.right is BST.empty:
return self.entry

return self.right.max

@property
def min(self):

if self.left is BST.empty:
return self.entry

return self.left.min

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

DISCUSSION 9: RECURSIVE OBJECTS Page 9
3.2 Questions

1. Define a function insert that takes in a BST, bst, and a number, n, and mutates bst
by inserting a new node. insert should place the new node as a leaf in the correct
position. If t is the BST on the left, then calling insert(t, 3) will change t to the
BST on the right. Do not return a new BST unless bst is empty, in which case return
a BST containing only n.

4 4
/ \ / \

2 5 -> 2 5
/ / \
1 1 3

def insert(bst, n):
"""
>>> bst = BST(4, BST(2, BST(1)), BST(5))
>>> insert(bst, 3)
>>> bst.left.right.entry
3
"""

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

