
SCHEME 10
COMPUTER SCIENCE 61A

July 26, 2016

0.1 Warm Up: Conditional Expressions

1. What does Scheme print?
scm> (if (or #t (/ 1 0)) 1 (/ 1 0))

scm> (if (> 4 3) (+ 1 2 3 4) (+ 3 4 (* 3 2)))

scm> ((if (< 4 3) + -) 4 100)

scm> (if 0 1 2)

0.2 Warm Up: Write Some Functions

1. Write a function that calculates factorial. (Note we have not seen any iteration yet.)
(define (factorial x)

)



DISCUSSION 10: SCHEME Page 2
2. Write a function that calculates the nth Fibonacci number.
(define (fib n)

(if (< n 2)
1

)

1 Pairs and Lists

To construct a (linked) list in Scheme, you can use the constructor cons (which takes
two arguments). nil represents the empty list. If you have a linked list in Scheme,
you can use selector car to get the first element and selector cdr to get the rest of the
list. (car and cdr don’t stand for anything anymore, but if you want the history go to
http://en.wikipedia.org/wiki/CAR_and_CDR.)

scm> nil
()
scm> (null? nil)
#t
scm> (cons 2 nil)
(2)
scm> (cons 3 (cons 2 nil))
(3 2)
scm> (define a (cons 3 (cons 2 nil)))
a
scm> (car a)
3
scm> (cdr a)
(2)
scm> (car (cdr a))
2
scm> (define (len a)

(if (null? a)
0
(+ 1 (len (cdr a)))))

len
scm> (len a)
2

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin

http://en.wikipedia.org/wiki/CAR_and_CDR


DISCUSSION 10: SCHEME Page 3
If a list is a ”good looking” list, like the ones above where the second element is always
a linked list, we call it a well-formed list. Interestingly, in Scheme, the second element
does not have to be a linked list. You can give something else instead, but cons always
takes exactly 2 arguments. These lists are called malformed list. The difference is a dot:
scm> (cons 2 3)
(2 . 3)
scm> (cons 2 (cons 3 nil))
(2 3)
scm> (cdr (cons 2 3))
3
scm> (cdr (cons 2 (cons 3 nil)))
(3)

In general, the rule for displaying a pair is as follows: use the dot to separate the car
and cdr fields of a pair, but if the dot is immediately followed by an open parenthesis,
then remove the dot and the parenthesis pair. Thus, (0 . (1 . 2)) becomes (0 1
. 2)

There are many useful operations and shorthands on lists. One of them is list special
form list takes zero or more arguments and returns a list of its arguments. Each argu-
ment is in the car field of each list element. It behaves the same as quoting a list, which
also creates the list.
scm> (list 1 2 3)
(1 2 3)
scm> '(1 2 3)
(1 2 3)
scm> (car '(1 2 3))
1
scm> (equal? '(1 2 3) (list 1 2 3))
#t
scm> '(1 . (2 3))
(1 2 3)
scm> '(define (square x) (* x x))
(define (square x) (* x x))

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 10: SCHEME Page 4
1. Define a function that takes 2 lists and concatenates them together. Notice that simply

calling (cons a b) would not work because it will create a deep list. Instead, think
recursively!
(define (concat a b)

)
scm> (concat '(1 2 3) '(2 3 4))
(1 2 3 2 3 4)

2. Define replicate, which takes an element x and a non-negative integer n, and re-
turns a list with x repeated n times.
(define (replicate x n)

)
scm> (replicate 5 3)
(5 5 5)

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 10: SCHEME Page 5
3. A run-length encoding is a method of compressing a sequence of letters. The list (a
a a b a a a a) can be compressed to ((a 3) (b 1) (a 4)), where the com-
pressed version of the sequence keeps track of how many letters appear consecutively.

Write a Scheme function that takes a compressed sequence and expands it into the
original sequence. Hint: try to use functions you defined earlier in this worksheet.
(define (uncompress s)

)
scm> (uncompress '((a 1) (b 2) (c 3)))
(a b b c c c)

2 Streams

In Python, we can use iterators to represent infinite sequences. However, Scheme does not
support iterators. Let’s see what happens when we try to use a Scheme list to represent
an infinite sequence of natural numbers:
scm> (define (naturals n)

(cons n (naturals (+ n 1))))
naturals
scm> (naturals 0)
Error: maximum recursion depth exceeded

Because the second argument to cons is always evaluated, we cannot create an infinite
sequence of integers using a Scheme list.

Instead, our Scheme interpreter (and scheme.cs61a.org) supports streams, which are lazy
Scheme lists. The first element is represented explicitly, but the rest of the stream’s ele-
ments are computed only when needed. This evaluation strategy, where we don’t com-
pute a value until it is needed, is called lazy evalutation. Let’s try to implement the se-
quence of natural numbers again using a stream!

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 10: SCHEME Page 6
scm> (define (naturals n)

(cons-stream n (naturals (+ n 1))))
naturals
scm> (define nat (naturals 0))
nat
scm> (car nat)
0
scm> (car (cdr-stream nat))
1
scm> (car (cdr-stream (cdr-stream nat)))
2

We use the special form cons-stream to create a stream. Note that cons-stream is
a special form, because the second operand (naturals (+ n 1))) is not evaluated
when cons-stream is called. It’s only evaluated when cdr-stream is used to inspect
the rest of the stream.

• nil is the empty stream

• cons-stream creates a non-empty stream from an initial element and an expression
to compute the rest of the stream

• car returns the first element of the stream

• cdr-stream computes and returns the rest of stream

Streams are very similar to Scheme lists. The cdr of a Scheme list is either another
Scheme list or nil; likewise, the cdr-stream of a stream is either a stream or nil.
The difference is that the expression for the rest of the stream is computed the first time
that cdr-stream is called, instead of when cons-stream is used. Subsequent calls to
cdr-stream return this value without recomputing it. This allows us to efficiently work
with infinite streams like the naturals example above. We can see this in action by
using a non-pure function to compute the rest of the stream:
scm> (define (compute-rest n)
...> (print 'evaluating!)
...> (cons-stream n nil))
compute-rest
scm> (define s (cons-stream 0 (compute-rest 1)))
s
scm> (car (cdr-stream s))
evaluating!
1
scm> (car (cdr-stream s))
1

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 10: SCHEME Page 7
Note that the symbol evaluating! is only printed the first time cdr-stream is called,
and no other time.

1. Write map-stream, which takes a function f and a stream s and returns a new
stream, which has all the elements from s, but with f applied to each one.

(define (map-stream f s)

scm> (define evens (map-stream (lambda (x) (* x 2)) nat))
evens
scm> (car (cdr-stream evens))
2

2. The Fibonacci sequence is a classic infinite sequence. Implement make-fib-stream,
which takes two numbers and produces a stream of Fibonacci numbers starting with
those two numbers.

(define (make-fib-stream a b)

scm> (define fib-stream (make-fib-stream 0 1))
fib-stream
scm> (car (cdr-stream (cdr-stream (cdr-stream (cdr-stream

(cdr-stream fib-stream))))))
5

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 10: SCHEME Page 8

3 Tail-Call Optimization

Scheme implements tail-call optimization, which allows programmers to write recursive
functions that use a constant amount of space. A tail call occurs when a function calls
another function as its last action of the current frame. Because in this case Scheme
won’t make any further variable lookups in the frame, the frame is no longer needed, and
we can remove it from memory. In other words, if this is the last thing you are going to
do in a function call, we can reuse the current frame instead of making a new frame.

Consider this version of factorial that does not use tail calls:
(define (fact n)
(if (= n 0) 1

(* n (fact (- n 1)))))

The recursive call occurs in the last line, but it is not the last expression evaluated. After
calling (fact (- n 1)), the function still needs to multiply that result with n. The
final expression that is evaluated is a call to the multiplication function, not fact itself.
Therefore, the recursive call is not a tail call.

However, we can rewrite this function using a helper function that remembers the tem-
porary product that we have calculated so far in each recursive step.
(define (fact n)
(define (fact-tail n result)

(if (= n 0) result
(fact-tail (- n 1) (* n result))))

(fact-tail n 1))

fact-tail makes a single recursive call to fact-tail that is the last expression to
be evaluated, so it is a tail call. Therefore, fact-tail is a tail recursive process. Tail
recursive processes can take a constant amount of memory because each recursive call
frame does not need to be saved. Our original implementation of fact required the
program to keep each frame open because the last expression multiplies the recursive
result with n. Therefore, at each frame, we need to remember the current value of n.

In contrast, the tail recursive fact-tail does not require the interpreter to remember
the values for n or result in each frame. Instead, we can just update the value of n
and result of the current frame! Therefore, we can carry out the calculation using only
enough memory for a single frame.

3.1 Identifying tail calls

A function call is a tail call if it is in a tail context (but a tail call might not be a recursive
tail call as seen above in the first fact definition). We consider the following to be tail
contexts:

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 10: SCHEME Page 9
• the last sub-expression in a lambda’s body

• the second or third sub-expression in an if form

• any of the non-predicate sub-expressions in a cond form

• the last sub-expression in an and or an or form

• the last sub-expression in a begin’s body

Before we jump into questions, a quick tip for defining tail recursive functions is to use
helper functions. A helper function should have all the arguments from the parent func-
tion, plus additional arguments like total or counter or result.

1. For each of the following functions, identify whether it contains a recursive call in a
tail context. Also indicate if it uses a constant number of frames.
(define (question-a x)

(if (= x 0)
0
(+ x (question-a (- x 1)))))

(define (question-b x y)
(if (= x 0)

y
(question-b (- x 1) (+ y x))))

(define (question-c x y)
(if (> x y)

(question-c (- y 1) x)
(question-c (+ x 10) y)))

(define (question-d n)
(if (question-d n)

(question-d (- n 1))
(question-d (+ n 10))))

2. Write a tail recursive function that returns the nth fibonacci number. We define fib(0) =
0 and fib(1) = 1.
(define (fib n)

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin


