INTERPRETERS

COMPUTER SCIENCE 61A

July 28, 2016

Calculator

We are beginning to dive into the realm of interpreting computer programs — that is, writ-
ing programs that understand other programs. In order to do so, we’ll have to examine
programming languages in-depth. The Calculator language, a subset of Scheme, was the
first of these examples. In today’s discussion, we’ll be extending Calculator with variables
and user-defined functions.

The Calculator language is a Scheme-syntax language that currently includes only the
four basic arithmetic operations: +, —, x, and /. These operations can be nested and can
take varying numbers of arguments. Here’s a few examples of Calculator in action:
calc> (+ 2 2)

4

calc> (= 5)
-5

calc> (» (+ 1 2) (+ 2 3))
15

Our goal now is to write an interpreter for this language, and extend its functionality to
variables and user-defined functions. The job of an interpreter is to evaluate expressions.
So, let’s talk about expressions.

A Calculator expression is just like a Scheme list. To represent Scheme lists in Python, we
use Pair objects. For example, thelist (+ 1 2) isrepresented asPair (’+’, Pair (1,



DISCUSSION 11: INTERPRETERS

Page 2

Pair (2,

nil))). The Pair class is similar to the Scheme procedure cons, which

would represent the same listas (cons "+ (cons 1 (cons 2 nil))).

Pair is very similar to Link, the class we developed for representing linked lists. In ad-
dition to Pair objects, we include a nil object to represent the empty list. Pair instances
have methods:

1. __len__, which returns the length of the list.
2. _getitem_,, which allows indexing into the pair.
3. map, which applies a function, £n, to all of the elements in the list.

nil has the methods __len__, _getitem__, and map.

Here’s an implementation of what we described:

class nil:
"""Represents the special empty pair nil in Scheme."""

def

def

def

def

def

__repr_ (self):
return 'nil’

__str__ (self):
return ' ()'

__len__ (self):
return 0

_ _getitem__ (self, 1):
raise IndexError ('Index out of range')

map (self, fn):
return nil

nil = nil () # this hides the nil class #*foreverx*

class Pair:
"""Represents the built-in pair data structure in Scheme."""

def

def

__init_ (self, first, second):
self.first = first
self.second = second

__repr_ (self):
return 'Pair({}, {})'.format (repr(self.first), repr(self.
second) )

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 11: INTERPRETERS

Page 3

def str (self):
result = '"(' + str(self.first)

while isinstance(self.second, Pair):

self = self.second

result += ' ' + str(self.first)

if self.second is nil:
return result + ")

return result + ' . ' 4+ str(self.second)

def len_ (self):

return 1 + len(self.second)

def _ getitem_ (self, 1i):
if i == 0:
return self.first
return self.second[i-1]

def map(self, fn):

return Pair (fn(self.first), self.second.map (fn))

1.1 Questions

+|)l

1. Translate the following Calculator expressions into calls to the Pair constructor.

> (+ 1 2 (- 3 4))

> (+ 1 (x 2 3) 4)

2. Translate the following Python representations of Calculator expressions into the proper

Scheme syntax:
>>> Pair('+', Pair(l, Pair (2, Pair (3,

>>> Pair('+', Pair(l, Pair(Pair('=x"',

Pair (4,

Pair (2,

nil)))))

Pair (3,

nil))),

nil)))

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with

Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,

Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 11: INTERPRETERS Page 4

Evaluation

Evaluation discovers the form of an expression and executes a corresponding evaluation
rule.

We’ll go over two such expressions now:

1. Primitive expressions are evaluated directly. For example, the numbers 3.14 and 165

1 4

just evaluate to themselves, and the string “+” evaluates to the calc_add function.
2. Call expressions are evaluated in the same way you've been doing them all semester:

(1) Evaluate the operator.

(2) Evaluate the operands from left to right.

(3) Apply the operator to the operands.

Here’'s calc_eval:

def calc_eval (exp) :

""'Evaluates a Calculator expression represented as a Pair.
if isinstance (exp, Pair):

return calc_apply(calc_eval (exp.first),

list (exp.second.map(calc_eval)))

elif exp in OPERATORS:

return OPERATORS [exp]
else: # Just a number

return exp

And here’s calc_apply:
def calc_apply (op, args):

"""Applies an operator to a Pair of arguments."""
return op (*args)

2.1 Questions

1. Suppose we typed each of the following expressions into the Calculator interpreter.
How many calls to calc_eval would they each generate? How many calls to calc_apply?
> (+ 2 4 6 8)

> (+ 2 (« 4 (= 6 8)))

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 11: INTERPRETERS Page 5

Defining Variables and Functions

Let’s extend the functionality of our Calculator interpreter to allow us to define new vari-
ables and functions. We want this to work the same way as how we would bind a symbol
to a value in Scheme, e.g.: (define x (+ 3 4)).

Using our current calc_eval implementation, we would map calc_eval on each ar-
gument in exp . second. However, in the example above, we should not call calc_eval
on x. Hence, we introduce special forms.

First, we will implement do_define_form, which will allow us to bind symbols to val-
ues. Then, we will implement do_lambda_form, which will allow us to create user-
defined functions.

3.1 Questions

1. Before we can create functions and bind symbols to values, we need a way to keep
track of different frames and environments. Fill in the define and 1ookup methods
in the Frame class. The define method should assign the key name to the value
value in the bindings of the current frame. The 1ookup method should return the
value bound to name in the current frame, or lookup in the parent if there is one. Oth-
erwise, raise a NameError.

class Frame:
def _ init_ (self, parent=None):
self.bindings = {}

self.parent = parent

def define(self, name, value):

def lookup(self, name):

global_frame = Frame ()

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 11: INTERPRETERS Page 6

Note that, to handle environments and the define and lambda special forms, we
have to modify calc_eval as follows:

def calc_eval (exp, env):

"""Evaluates a Calculator expression."""

if isinstance (exp, Pair):
first, second = exp.first, exp.second
if first in SPECIAL_FORMS:

return SPECIAL_FORMS[first] (second, env)

op = calc_eval (first, env)
args = second.map (lambda exp: calc_eval (exp, env))
return calc_apply (op, list (args))

elif exp in OPERATORS:
return OPERATORS [exp]

elif isinstance (exp, str):
return env.lookup (exp)

else:
return exp

calc_eval has to take in an additional parameter env, which is the current frame
that exp is being evaluated in. If exp is a string, meaning it is a symbol, we simply
look it up in env.

To handle special forms, we create a dictionary SPECIAL_FORMS that maps the strings
"define" and "lambda" to the functions do_define_formand do_lambda_form,
respectively. These functions take in the rest of exp and perform the order of evalua-
tion specific to their special form.

SPECIAL_FORMS = {'define': do_define_form,
'lambda': do_lambda_form}

. Let’s now implement do_define_form. This function takes in exp, which is the rest
of the expression after the define), and a frame env and binds the name given by
exp.first to the value that exp.second. first evaluates to in env.

def do_define_form(exp, env):
target = exp.first

return target

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 11: INTERPRETERS Page 7
3. We can now bind symbols to values! But there’s more work to be done to allow for
user-defined functions.

We will first implement a class that represents procedures. Instances of the LambdaProcedure
class are created with formals, a Pair containing the names of the parameters,

body, a Pair representing the expression that is the body of the procedure, and env,

the frame where the procedure was created.

We will restrict ourselves to procedures with only one expression in the body, similar
to how lambda functions are restricted in Python. In the project, you will have to
handle arbitrary procedures.

Implement the make_call_frame method, which takes ina Pair of arguments args
and creates and returns a new frame where the formal parameters of the procedure
are bound to the elements of args. Make sure the frame that is created has the correct
parent.

class LambdaProcedure:
""r"A procedure defined by a lambda expression."""

def _ init_ (self, formals, body, env):
self.formals = formals
self.body = body
self.env = env

def make_call_frame(self, args):

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 11: INTERPRETERS Page 8
Now, it is easy to implement do_lambda_form:

def do_lambda_form(exp, env):
return LambdaProcedure (exp.first, exp.second.first, env)

Evaluating a 1ambda special form simply creates and evaluates to the procedure it-
self. However, there is one more step: currently, our calc_apply does not know how
to apply user-defined functions. Modity it below so that it can handle instances of the
LambdaProcedure class:

def calc_apply(op, args):
"""Applies an operator to a Pair of arguments."""
if isinstance (op, LambdaProcedure) :

else:
return op (*args)

We have now added variables and procedures to our Calculator language! With a few
small changes to the parser (to allow for symbols) and the REPL (to handle environ-
ments), we are able to use our interpreter like this:

calc> (+ 4 5)

9

calc> (define x 4)

X

calc> (+ x 6)

10

calc> ((lambda (x) (* x x)) 7)
49

calc> (define f (lambda (x y) (* (+ x y) (= x vy))))
f

calc> (£ 5 4)

9

Download the Calculator interpreter from Lecture 21 and see if you can figure out the
necessary changes to get this to work!

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



