LOGIC

COMPUTER SCIENCE 61A

August 2, 2016

Introduction

Over the semester, we have been using imperative programming — a programming style
where code is written as a set of instructions for the computer. In this section, we intro-
duce declarative programming — code that declares what we want, not how to do it. Logic
programming (what we are learning) is a type of declarative programming.

In this class, we will be using a language called Logic. The Logic language borrows syntax
from Scheme and ideas from Prolog.

Simple Facts and Queries

In Logic, you can define facts. Facts are simply Scheme lists of relations and relations are
simply Scheme lists of symbols. Remember, relations are not call expressions; instead,
relations are used to express relationships between symbols.

Here’s an example of a fact:
> (fact (sells supermarket groceries))

This line of code says: “This is a fact: supermarkets sell groceries”. When we declare
something as a fact, we are simply saying that it is a true statement. You can think of a
fact as an axiom, i.e., something that is fundamentally true.

“sells” is a quality that relates two things, “supermarket” and “groceries.” What are the
values of “supermarket” and “groceries”? They have no values! They are symbols — sym-
bols are Logic’s primitives.



DISCUSSION 12: LOGIC Page 2
Having defined some facts, we can make queries — in other words, we can ask Logic for
information based on the facts that we’ve defined:

> (query (sells supermarket groceries))

Success!

> (query (sells supermarket books))
Failed.

> (query (sells supermarket ?stuff))
Success!

stuff: groceries

The first query asks, “Is it a fact that supermarkets sell groceries?” and the second query
asks, “Is it a fact that supermarkets sell books?”. The third query above is equivalent to
asking “What do supermarkets sell?” Logic replies that supermarkets sell groceries, based
on the previously defined fact.

Note that ?stuff isavariable in Logic, whereas supermarket isasymbol. supermarket
is always going to be supermarket, but ?stuff is unknown — it is only after the query
that we know what the value of ?stuff is.

We can also query both multiple elements of a relation:
> (query (sells 7?place ?stuff))

Success!

place: supermarket stuff: groceries

This is equivalent to asking “What are places that sell stuff, and what stuff do they sell?”
Logic will tell you what each variable should be based on previously defined facts.

2.1 Simple Questions

1. Write a fact that checks if two elements are equal.

2. Define a set of facts about complementary nucleotides. Remember from biology that
* Adenine and Thymine are complementary to each other

¢ Cytosine and Guanine are complementary to each other

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 12: LOGIC Page 3

Complex Facts

In Logic, you can also define more complex facts. For example:
> (fact (sells—same ?storel ?store2)

(sells ?storel ?item)

(sells ?store2 ?item))

Here is the basic syntax of a complex fact:

> (fact (<conclusion>)
(<hypothesis 1>)
(<hypothesis 2>)

(<hypothesis n>))

This is equivalent to saying “the conclusion is true if all the hypotheses are true.” If even
one of the hypotheses is false, the conclusion cannot be proven using this fact.

For example, the se11s-same complex factis equivalent to saying “storel and store2
sell the same thing if storel sells item and store?2 also sells the same item.”

You can perform fact-checking with complex facts, just like with simple facts:
> (fact (sells farmers-market groceries))

> (fact (sells starbucks coffee))

> (query (sells—-same supermarket farmers-market))
Success!

> (query (sells—same supermarket starbucks))

Failed.

We can also do querying:

> (query (sells-same ?store supermarket))
Success!

store: farmers-market

This is equivalent to asking “what store sells the same thing as a supermarket?”

We can also ask “what stores sell the same thing?”

> (query (sells-same ?storel ?store?))
Success!

storel: supermarket store2: farmers-market
storel: farmers-market store2: supermarket
storel: supermarket store2: supermarket
storel: farmers-market store2: farmers-market

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 12: LOGIC Page 4
3.1 Questions

1. Write simple and complex facts for in, a relation between a symbol and a list that is
satisfied if and only if that symbol is in the list.
> (query (in a (a b ¢)))

Success!!

> (query (in d (a b ¢)))
Failed.

> (query (in ?elem (a b c)))
Success!!

elem: a

elem: b

elem: c

2. Write simple and complex facts for every-other, a relation between two lists that is
satisfied if and only if the second list is the same as the first list, but with every other
element removed.

> (query (every-other (frodo merry sam pippin) ?x))

Success!

Xx: (frodo sam)

> (query (every-other (gandalf) ?x))
Success!

x: (gandalf)

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 12: LOGIC Page 5
3. Write simple and complex facts for mapped, a relation between a relation and two lists

that is satisfied if and only if each element of the second list satisfies the relation with
the corresponding element of the first list. (The example uses the complementary
fact you defined at the beginning of discussion.)
> (query (mapped complementary (g t a g t a g t a) ?nyan))
Success!!
nyan: (c at catcat)

4. Write facts for prefix, a relation between two lists that is satisfied if and only if
elements of the first list are the first elements of the second list, in order.
> (query (prefix (being for the) (being for the
benefit of mister kite)))
Success!
> (query (prefix (for no one) (for no one)))
Success!

> (query (prefix () (got to get you into my 1life)))
Success!

> (query (prefix (want i to) (i want to hold your hand)))
Failed.

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with

Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 12: LOGIC Page 6

5. Write facts for sublist, a relation between two lists that is satisfied if and only if the
first is a consecutive sublist of the second. For example:

> (query (sublist (give) (never gonna give you up)))
Success!

> (query (sublist (you up) (never gonna give you up)))
Success!

> (query (sublist () (never gonna give you up)))

Success!

> (query (sublist (never give up) (never gonna give you up)))
Failed.

> (query (sublist (let you down) (never gonna give you up)))
Failed.

Hint: You will want to use the prefix fact that you previously defined.

6. Write facts to implement the subs relation that relates two symbols o1d and new
with two lists input and output. The relation holds whenever output is identical
to input, except with every occurrence of o1d replaced by new.

Hint: You may need the equal relation from earlier.

> (query (subs romeo fred (romeo oh romeo wherefore art thou
romeo) ?x))

Success!

xXx: (fred oh fred wherefore art thou fred)

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 12: LOGIC Page 7
3.2 Extra Questions

Similarly to the map coloring example from lecture, we can construct the graph shown
on the right in Logic using some simple facts:

> (fact (vertices A B C D)) @ e
> (fact (edge B A))
> (fact (edge B C))
> (fact (edge C A))
> (fact (edge D B))

We can implement some pretty interesting relations for this graph. In these questions we
will implement the Hamiltonian path relation, which is true for a vertex if there a path
starting from that vertex that visits each node once. For example, in the given graph, (D
B C A) is a Hamiltonian path, and this is actually the only one. Let’s start with a few
helper relations.

1. Implement facts for the remove relation, which relates e1em and two lists if, and only
if, the second list has all and only the elements of the first list but with one occurrence
of elemremoved. elem must appear at least once in the first list.
> (query (remove a (b an ana s) ?lst))

Success!

lst: (b n ana s)

Ist: (b anna s)

Ist: (b anan s)

> (query (remove no (not in this list) ?1st))
Failed.

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 12: LOGIC Page 8
2. Use remove to implement fact for the contain-same relation, which relates two
lists that contain exactly the same elements, though not necessarily in the same order.
> (query (contain-same (A B C D) (D C A B)))
Success!

> (query (contain-same (A B C) (B B C A)))
Failed.

3. Our last helper relation is aptly named hamil-helper, a relation between a vertex
v and a list of vertices so-far that is satisfied if the rest of a Hamiltonian path can
be constructed from v given that we have already visited the vertices in so-far.
contain-same may be useful here.
> (query (hamil-helper A (B C D)))

Success!
> (query (hamil-helper A (B C)))
Failed.

4. Finally, write hamiltonian, a relation that holds for a vertex v if there is a Hamilto-
nian path starting from v. This should be very easy now!
> (query (hamiltonian D))
Success!
> (query (hamiltonian B))
Failed.

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with

Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



