FINAL REVIEW

COMPUTER SCIENCE 61A

August 4, 2016

Mutable Sequences

1. Write a function that takes in two values x and e1, and a list, and adds as many e1’s
to the end of the list as there are x’s.
def add_this_many(x, el, 1lst):
"o Adds el to the end of 1st the number of times X occurs
in 1st.
>>> 1st = [1, 2, 4, 2, 1]
>>> add _this_many (1, 5, 1st)
>>> 1st
(i, 2, 4, 2, 1, 5, 5]
>>> add_this_many (2, 2, 1st)
>>> 1st
(1, 2, 4, 2, 1, 5, 5, 2, 2]

mmnn



DISCUSSION 13: FINAL REVIEW Page 2
2. Given a deep dictionary d, replace all occurences of x as a value (not a key) with y.
Hint: You will need to combine iteration and recursion.
def replace_all_deep(d, x, Vy):
mmn
>>> d = {1: {2: 3, 3: 4}, 2: {(4: 4, 5: 3}}
>>> replace_all_deep(d, 3, 1)
>>> d
{1: {(2: 1, 3: 4}, 2: {(4: 4, 5: 1}}

mmn

Object-Oriented Programming

1. Assume these commands are entered in order. What would Python output?
>>> class Foo:
def = init_ (self, a):
self.a = a
def garply(self):
return self.baz(self.a)
>>> class Bar (Foo) :
a =1
def baz (self, wval):
.. return val
>>> f = Foo (4)
>>> = Bar (3)
>>> f.a

o
|

>>> b.a

>>> f.garply ()

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION

13: FINAL REVIEW

Page 3

>>>

(o

>>>
>>> b

(o

>>>
>>>

Hh o Hh

.garply ()

.a =9
.garply ()

.baz = lambda val: val x val
.garply ()

Mutable Linked Lists and Trees

3.1 Linked Lists

Here is the implementation of the linked list class:
class Link:
empty = ()

def

def

def

def

_ init_ (self, first, rest=empty):
assert rest is Link.empty or isinstance (rest,
self.first = first

self.rest = rest
__getitem_ (self, 1i):
if 1 == 0:

return self.first
return self.rest[i-1]

__len__ (self):
return 1 + len(self.rest)
_ _repr_ (self):

if self.rest is Link.empty:

return 'Link({})'.format (self.first)
else:

return 'Link({}, {})'.format (self.first,

Link)

repr (self.rest))

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 13: FINAL REVIEW Page 4
1. Write a recursive function £1ip_two that takes as input a linked list 1nk and mutates
1nk so that every pair is flipped.
def flip_two(lnk):

mmn

>>> one_1nk = Link (1)

>>> flip two (one_1lnk)

>>> one_ 1nk

Link (1)

>>> Ink = Link (1, Link(2, Link (3, Link (4, Link(5)))))
>>> flip two(lnk)

>>> I1nk

Link (2, Link (1, Link (4, Link (3, Link(5)))))

mmnn

3.2 Trees

class Tree:
def _ init_ (self, entry, children=][]):
for ¢ in children:
assert isinstance(c, Tree)
self.entry = entry
self.children = children

def is leaf (self):
return not self.children

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 13: FINAL REVIEW Page 5
1. Assuming that every entry in t is a number, let’s define average (t), which returns
the average of all the entries in t.

def average (t):
mmn

Returns the average value of all the entries in t.
>>> t0 = Tree (0, [Tree(l), Tree (2, [Tree(3)])])
>>> average (t0)

1.5

>>> t]l = Tree(8, [t0, Tree(4)])

>>> gverage (tl)

3.0

mmn

2. Write a program flatten that given a Tree t, will return a linked list of the elements
of t, ordered by level. Entries on the same level should be ordered from left to right.
For example, the following tree will return the linked list<1 2 3 4 5 6 7>.

def flatten(t):

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 13: FINAL REVIEW Page 6

Scheme

1. Write a Scheme function that, when given an element, a list, and an index, inserts the
element into the list at that index.
(define (insert element lst index)

)

2. Define deep-apply, which takes a nested list and applies a given procedure to every
element. deep-apply should return a nested list with the same structure as the input
list, but with each element replaced by the result of applying the given procedure to
that element. Use the built-in 1ist ? procedure to detect whether a value is a list. The
procedure map has been defined for you.

(define (map fn lst)
(if (null? 1st)
nil
(cons (fn (car 1lst)) (map fn (cdr 1lst)))))
(define (deep-apply fn nested-list)

scm> (deep-apply (lambda (x) (» x x)) "(1 2 3))

(1 4 9)

scm> (deep-apply (lambda (x) (*» x x)) "(1 ((4) 5) 9))
(1 ((le) 25) 81)

scm> (deep-apply (lambda (x) (x x x)) 2)

4

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 13: FINAL REVIEW Page 7
4.1 Streams
1. What would Scheme display?
scm> (define (has—-even? s)
(cond ((null? s) False)
((even? (car s)) True)
(else (has—-even? (cdr—-stream s)))))
has—-even?
scm> (define ones (cons—-stream 1 ones))
scm> (define twos (cons—-stream 2 twos))
scm> ones
scm> (cdr ones)
scm> (cdr—stream ones)
scm> (has—even? ones)
scm> (has—even? twos)
Logic

1. Write facts for match, a relation between two lists if and only if the two lists are

identical.

> (query (match (i am so cool) (i am . ?you)))
Success!

you: (so cool)

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with
Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



DISCUSSION 13: FINAL REVIEW Page 8

Generators

1. Write a generator function that returns all subsets of the positive integers from 1 to n.
Each call to this generator’s __next__ method will return a list of subsets of the set

[1, 2, ..., n],wherenisthenumber of times___next__ was previously called.

def generate_subsets|():
mmn

>>> subsets = generate subsets()
>>> for _ 1n range(3):

print (next (subsets))
[[]]
(r7, [(171]
(ri, (11, 21, [1, 2]]

mmn

CS 61A Summer 2016: Brian Hou and Marvin Zhang, with

Daniel Haas, Eric Bo, Jack Thakar, Jerome Baek, Katya Stukalova, Marsalis Gibson, Mitas Ray, Neil Agarwal,
Samantha Wong, Tammy Nguyen, Vivian Fang, and Zhen Qin



